Воздействие энергетики на окружающую среду кратко. Отрицательное воздействие на окружающую среду при производстве электрической энергии

Как влияет энергетика на окружающую среду?

Защита окружающей человека среды, как это всем хорошо известно, - одна из важнейших глобальных проблем. Мы остановимся только на той части проблемы, которая связана с электростанциями. Воздействие на окружающую среду различных типов электростанций (ТЭС, ГЭС, АЭС) различно, и поэтому рассмотрим каждый из этих трех случаев отдельно.

Пожалуй, наибольшее отрицательное воздействие на окружающую среду в настоящее время оказывают ТЭС. Их воздействие заключается в загрязнении атмосферы мелкими твердыми частицами золы (Так как большинство ТЭС использует в качестве топлива мелкоизмельченный (в специальных мельницах) уголь, унос мелких частиц несгоревшего угля ничтожен; коэффициент избытка воздуха в топке всегда больше единицы (примерно на 20%). )и особенно выбросами с уходящими газами окислов серы (если, конечно, сера содержится в топливе, что бывает сплошь и рядом) и окислов азота.

Что касается выбросов мелких частиц золы, то для борьбы с этим злом налажен массовый выпуск фильтров с КПД 95 - 99%. Можно было бы считать этот вопрос решенным, если бы на многих электростанциях, работающих на угле, фильтры не находились бы в столь безобразном состоянии, что их КПД снижается до 80% и даже еще более. Но это уже вопрос порядка, дисциплины.

С выбросами окислов серы и азота дело обстоит гораздо сложнее (Окислы серы возникают при сжигании любого топлива (угля, мазута, природного газа), если в нем содержится сера; окислы азота образуются при сжигании любого топлива тем в большем количестве, чем выше температура. ). До настоящего времени не создано эффективно действующих и дешевых фильтров. Однако необходимо отметить, что работа по созданию таких фильтров ведется энергично, и, нужно думать, она будет успешно завершена к 2000 г., а может быть, и ранее. Пока что для избежания предельных концентраций SO X и NO 2 в местах расположения электростанций строятся высокие выхлопные трубы - до 320 - 350 м.

Следует заметить, что окислы углерода, когда речь идет о тепловых электростанциях, не создают сколько-нибудь серьезных затруднений. Продукт неполного сгорания углерода СО, вредно действующий на людей даже в малых концентрациях, в продуктах сгорания ТЭС практически отсутствует. Как уже говорилось выше, причиной этого является большой избыток воздуха.

Выбросы углекислого газа СО 2 , который независимо от человеческой деятельности входит в состав атмосферы в количестве около 0,03% по объему, обращают на себя внимание главным образом с точки зрения увеличения так называемого парникового эффекта атмосферы и связанного с этим возможного повышения температуры атмосферы. Сущность парникового эффекта в том, что атмосфера Земли прозрачна для основной части излучения Солнца (в оптическом диапазоне). В атмосфере Земли излучение поглощается молекулами СО 2 , Н 2 О и другими, именно поэтому увеличение углекислоты в атмосфере Земли может привести к повышению ее (атмосферы) температуры.

К повышению температуры атмосферы и поверхности Земли может привести также увеличение производства и потребления энергии. Необходимо помнить, что вся произведенная энергия, согласно второму началу термодинамики, в конце концов превратится в тепло.

Все эти рассуждения о росте температуры атмосферы и поверхности Земли были, однако, поколеблены проведенными наблюдениями. С начала XX в. до 40-х годов среднегодовая температура повысилась приблизительно на 0,7° С, а площадь арктических льдов уменьшилась на 10%. Объясняли это увеличением концентрации СО 2 в атмосфере и ростом производства и потребления энергии.

Но за последующие приблизительно 30 лет, несмотря на рост выбросов СО 2 в 2 раза к продолжающееся увеличение производства и потребления энергии, происходило и продолжает происходить снижение температуры, которая может скоро приблизиться к уровню конца XIX в.

Что все это означает? Только то, что мы еще плохо знаем описываемые процессы. Многие считают, что до сих пор не принималось во внимание значение аэрозолей - находящихся во взвешенном состоянии мельчайших твердых частиц и капель жидкости. Рассмотрение этой гипотезы ведется.

Что касается жидкой фазы (рек, озер, прудов), то ТЭС сколько-нибудь существенно их не загрязняют. Надо только внимательно следить, чтобы нагрев воды, например пруда, не превысил допустимых пределов. В случае чего всегда есть запасной вариант - градирня. Умеренный нагрев пруда может быть даже полезным - содействовать рыбному хозяйству.

Разговор о воздействии ТЭС на окружающую среду можно было бы считать на этом исчерпанным. Но нам хочется, несколько выходя за рамки установленной программы, поставить такой вопрос: какие источники загрязнения наиболее существенны для атмосферы?

Для развитых стран, особенно для больших городов, это автомобиль. В ФРГ, например, на долю ТЭС приходится около 25% всего используемого топлива, а на долю автомобилей - около 12%. В то же время в загрязнении воздушной среды на долю ТЭС приходится примерно 9% (это, конечно, немало, но, как сказано выше, есть реальные возможности резкого снижения этой цифры), а на долю автомобилей 50%.

Дело заключается в том, что в автомобилях (с карбюраторными двигателями) плохо сжигается топливо. Автомобили имеют, в частности, в отработавших продуктах сгорания много СО и NO x .

Вслед за автомобилями большое загрязнение атмосферы приносят отопительные (особенно нецентрализованные) установки, а также выхлопные газы предприятий.

Промышленные предприятия (особенно целлюлозно-бумажной, химической и нефтехимической промышленности, цветной металлургии и некоторые другие) - главные загрязнители водных объектов. Поэтому особо большое внимание должно уделяться очистным сооружениям. Кардинальное решение проблемы - создание предприятий с использованием воды в замкнутом контуре. Переходим теперь к ГЭС. Всего несколько десятилетий назад широкое распространение получила неправильная точка зрения о том, что ГЭС якобы не могут отрицательно влиять на окружающую среду. К сожалению, как об этом говорилось выше, дело обстоит не так.

На вопрос о том, можно ли сказать, что ГЭС настолько отрицательно влияют на окружающую среду, что их не надо строить вовсе, или, наоборот, влияние ГЭС на окружающую среду настолько мало, что их ничтоже сумняшеся можно строить дальше, единого ответа дать нельзя. В некоторых конкретных случаях их строить можно и должно, а в некоторых - нет.

В наибольшей мере объективный ответ на этот вопрос зависит от характеристики будущего водохранилища. Поэтому, повторяем, ответ о целесообразности строительства каждой конкретной ГЭС должен рассматриваться самостоятельно. К важнейшим характеристикам водохранилища относятся: размер зеркала водохранилищ, наличие в водохранилищах мелководий, влияние водохранилищ на местный климат, состояние почв и растительности, а также на рыбное хозяйство и водный (речной) транспорт.

Нельзя дать каких-либо твердых цифровых показателей типа: если на тысячу установленных киловатт ГЭС приходится не более n квадратных километров зеркала водохранилища, то ГЭС строить можно, а если больше, то - нет. Надо, конечно, учитывать, насколько ценные земли (главным образом с точки зрения сельского хозяйства) будут затоплены.

Большим бедствием являются водохранилища, большую часть которых составляют мелководья. Возникают они в случаях, когда плотины ГЭС сооружаются в равнинной местности, например волжские ГЭС. Вода мелководий интенсивно прогревается солнцем, что создает благоприятные условия для развития сине-зеленых водорослей. Они в большинстве случаев не используются и, разрастаясь, гниют, заражают воду и атмосферу.

Важен также учет интересов речного судоходства. В принципе сооружение ГЭС оказывает двоякое воздействие на судоходство: повышение глубины реки в верхнем бьефе, что для судоходства выгодно, и необходимость (при сквозном движении судов) сооружения шлюзов, что влечет за собой дополнительные капиталовложения.

Два обстоятельства главным образом влияют на рыбное хозяйство. Во-первых, это касается так называемых проходных рыб, совершающих в период нереста миграцию из морей в реки, например из Каспийского моря в Волгу. Воздвижение плотин на пути их миграции может привести к ликвидации очень денных проходных рыб. Попытки создать специальные устройства для миграции проходных рыб пока к успеху не привели.

Во-вторых, дело заключается и в том, что уровень воды в реках, на которых построены плотины ГЭС, подвержен колебаниям, определяемым электрической загрузкой ГЭС и, следовательно, количеством воды, которая должна протекать через ее турбины. Нередки случаи, когда выметанная рыбами икра вблизи поверхности реки гибнет (засыхает) вследствие понижения уровня воды.

Вопросы безопасности ядерных реакторов были рассмотрены выше. Здесь нам остается добавить очень немного. Реакторы ВВР второго поколения, о которых также уже говорилось, должны обладать так называемой внутренней безопасностью.

Это значит, если возникнет аварийная ситуация, а эксплуатационный персонал произведет неправильные действия, реактор все равно остановится.

женская одежда оптом от производителя больших размеров

Взаимодействие энергетического предприятия с окружающей средой происходит на всех стадиях добычи и использования топлива, преобразования и передачи энергии. Тепловой электростанцией активно потребляется воздух.

Образующиеся продукты сгорания передают основную часть теплоты рабочему телу энергетической установки, часть теплоты рассеивается в окружающую среду, а часть - уносится с продуктами сгорания через дымовую трубу в атмосферу. Продукты сгорания, выбрасываемые в атмосферу, содержат оксиды азота, углерода, серы, углеводорода, пары воды и др. вещества в твердом, жидком и газообразном состояниях.

Удаляемые из топки зола и шлак образуют золошлакоотвалы на поверхности литосферы. В паропроводах от парогенератора к турбогенератору, в самом турбогенераторе происходит потеря тепла в окружающую среду. В конденсаторе, а также в системе регенеративного подогрева питательной воды теплота конденсации и переохлаждения конденсата воспринимается охлаждаемой водой внешнего водоема. Кроме конденсаторов турбогенераторов,

потребителями охлаждающей воды являются маслоохладители, системы смыва золы и шлака и другие вспомогательные системы, выделяющие сливы на поверхность воды или в гидросферу.

Одним из факторов воздействия угольных станций на окружающую среду являются выбросы систем складирования топлива, его транспортировки, пылеприготовления и золоудаления. При транспортировке и складировании возможны не только пылевое загрязнение, но и выделения продуктов окисления топлива на складах.

Распространение перечисленных выбросов в атмосферу зависит от рельефа местности, скорости ветра, перегрева их по отношению к температуре окружающей среды, высоты облачности, фазового состояния осадков и их интенсивности. Так, крупные градирни в системе охлаждения конденсаторов электростанций существенно увлажняют микроклимат в районе станций, способствуют образованию низкой облачности, туманов, снижению солнечной освещенности, вызывают моросящие дожди, а в зимнее время - иней и гололед. Взаимодействие выбросов с туманом приводит к образованию устойчивого сильно загрязненного мелкодисперсного облака - смога, наиболее плотного у поверхности земли. Одним из видов воздействия станций на атмосферу является всё возрастающее потребление воздуха, необходимого для сжигания топлива.

Взаимодействие тепловой станции с гидросферой характеризуется в основном потреблением воды системами технического водоснабжения, в том числе безвозвратным потреблением воды.

Основными потребителями воды на ТЭС и АЭС являются конденсаторы турбин. Расход воды зависит от начальных и конечных параметров пара и от системы технического водоснабжения.

При промывке поверхностей нагрева котлоагрегатов образуются разбавленные растворы соляной кислоты, едкого натра, аммиака, солей аммония, железа и других веществ.

Основными факторами воздействия ТЭС на гидросферу являются выбросы теплоты, следствиями которых могут быть: локальное постоянное повышение температуры в водоеме; временное общее повышение температуры; изменение условий ледостава, зимнего гидрологического режима; изменение условий паводков; изменение распределения осадков, испарений, туманов. Наряду с нарушением климата тепловые выбросы приводят к зарастанию водоемов водорослями, нарушению кислородного баланса, что создает угрозу для жизни обитателей рек и озер.

Основными факторами воздействия ТЭС на литосферу является осаждение на её поверхности твердых частиц и жидких растворов - продуктов выбросов в атмосферу, потребление ресурсов литосферы, в т.ч.

Вырубка лесов, добыча топлива, изъятие из сельскохозяйственного оборота пахотных земель и лугов под строительство ТЭС и для устройства золоотвалов. Следствием этих преобразований является изменение ландшафта.

При нормальной эксплуатации АЭС дают значительно меньше вредных выбросов в атмосферу, чем ТЭС, работающие на органическом топливе. Так, работа АЭС не влияет на содержание кислорода и углеродного газа в атмосфере, не меняет её химического состояния. Основными факторами загрязнения окружающей среды здесь выступают радиационные показатели. Радиоактивность контура ядерного реактора обусловлена активизацией продуктов коррозии и проникновением продуктов деления в теплоноситель, а также наличием трития. Наведенной активности подвергаются практически все вещества, взаимодействующие с радиоактивными излучениями. Прямой выход радиоактивных отходов ядерных реакций в окружающую среду предотвращается многоступенчатой системой радиационной защиты. Наибольшую опасность представляют аварии на АЭС и неконтролируемое распространение радиации.

Вторая проблема эксплуатации АЭС - тепловое загрязнение. Основное тепловыделение АЭС в окружающую среду, как и на ТЭС, происходит в конденсаторах паротурбинных установок. Однако большие удельные расходы пара у АЭС определяют

и большие удельные расходы воды. Сбросы охлаждающей воды ядерных энергетических установок не исключают их радиационного воздействия на водную среду, в частности, поступления радионуклидов в гидросферу.

Важными особенностями возможного воздействия АЭС на окружающую среду являются переработка"радиоактивных отходов, которые образуются не только на АЭС, но и на всех предприятиях топливного цикла, а также необходимость демонтажа и захоронения элементов оборудования, обладающих радиоактивностью.

ГЭС оказывают существенное влияние на природную среду, которое проявляется как в период строительства, так и при эксплуатации. Сооружение водохранилищ перед плотинами ГЭС приводит к затоплению территорий. Изменение гидрологического режима и затопление территорий вызывают изменения гидрохимического, гидробиологического и гидрогеологического режимов водных масс. При интенсивном испарении влаги с поверхности водохранилищ возможны локальные изменения климата: повышение влажности воздуха, образование туманов, усиление ветров и т.п.

Сооружения ГЭС существенно влияют на ледовый режим водных масс: на сроки ледостава, толщину ледяного покрова и т.п.

При сооружении крупных водохранилищ ГЭС создаются условия для развития сейсмической активности, что обусловлено возникновением дополнительной нагрузки на земную кору и интенсификацией тектонических процессов.

Энергетика -- один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).

Глобальное потребление топлива возросло в 30 раз почти за 200 лет, прошедших со времени начала индустриальной эпохи, и достигло в 1994 г. 13,07 Гт у. т/год.

Подобный рост потребления энергии происходил спонтанно, независимо от воли человека. Это не только не вызывало тревоги у широкой общественности, но и рассматривалось как благоприятный фактор развития человечества.

Общепринятая классификация подразделяет источники первичной энергии на коммерческие и некоммерческие.

Коммерческие источники энергии включают в себя твердые (каменный и бурый уголь, торф, горючие сланцы, битуминозные пески), жидкие (нефть и газовый конденсат), газообразные (природный газ) виды топлива и электроэнергию, произведенную на ядерных, гидравлических, ветровых, геотермальных, солнечных и приливных электростанциях).

К некоммерческим относят все остальные источники энергии (дрова, сельскохозяйственные и промышленные отходы, мускульная сила рабочего скота и собственно человека).

Мировая энергетика в целом основана преимущественно на коммерческих энергоресурсах (свыше 90 % общего потребления энергии в 1995 г.).

Подобный акцент характерен для длительной индустриальной фазы развития общества в прошлом и, вне всякого сомнения, сохранится и в ближайшие десятилетия.

Однако в последующую четверть XX в. произошли значительные изменения в мировой энергетике, связанные прежде всего с переходом от экстенсивных путей ее развития, от энергетической эйфории к энергетической политике, основанной на повышении эффективности использования энергии и всемерной ее экономии. Поводом для этих изменений стали энергетические кризисы 1973 и 1979 гг., стабилизация запасов ископаемого топлива и удорожание его добычи, желание уменьшить обусловленную экспортом энергоресурсов зависимость экономики от политической нестабильности в мире. К этому стоит добавить всевозрастающее осознание правительствами цивилизованных стран потенциальной опасности крупномасштабных последствий развития энергетики и озабоченность по поводу растущей деградации условий жизни в связи с экологическим прессом на локальном уровне (кислотные дожди, загрязнение воздуха и воды, тепловое загрязнение

В течение первой половины прошедшего столетия уголь с явным преимуществом держал первенство среди источников коммерческой энергий (более 60 % до 1950 г.). Однако резко увеличивается добыча нефти, что связано с открытием новых месторождений и с колоссальными потребительскими достоинствами этого вида ископаемого топлива.

Тепловые электростанции и окружающая среда

ТЭС производят электрическую (до 75% общей выработки электроэнергии мира) и тепловую энергию, при этом вся материальная масса топлива превращается в отходы, поступающие в окружающую среду в виде газообразных и твердых продуктов сгорания (рис. 2). Эти отходы в несколько раз (при сжигании газа в 5, а при сжигании антрацита в 4 раза) превышают массу использованного топлива.

Рис. 2. Влияние ТЭС на окружающую среду:

Котел; 2 - дымовая труба; 3 - турбина; 4 - генератор; 5 - подстанция; 6 - конденсатор; 7 - конденсатный насос; 8 - питательный насос; 9 - линия электропередачи; 10 - потребители электроэнергии.

Выбрасываемые в окружающую среду продукты сгорания определяются видом и качеством топлива, а также методом его сжигания. В настоящее время около 70% общего производства электроэнергии ТЭС обеспечивается конденсационными электростанциями.

Вся тепловая энергетика мира ежегодно выбрасывает в атмосферу Земли более 200 млн. т оксида углерода, более 50 млн. т различных углеводородов, почти 150 млн. диоксида серы, свыше 50 млн. т оксида азота, 250 млн. т мелкодисперсных аэрозолей. Ни у кого не вызывает сомнения, что подобная "деятельность" тепловой энергетики вносит существенный вклад в нарушение баланса установившихся в биосфере круговых процессов, которое все отчетливее стало проявляться в последние годы. Нарушение баланса отмечается не только вредным веществам (оксиды серы и азота), но и по углекислому газу. Этот дисбаланс с увеличением масштабов производства электроэнергии на базе органического топлива может, как теперь многие считают, в отдаленной перспективе привести к значительным экологическим последствиям для всей планеты.

Процессу производства электроэнергии на ТЭС сопутствует также появление различных загрязняющих стоков, связанных с процессом водоподготовки, консервацией и промывкой оборудования, гидротранспортом золошлаковых отходов и т.п. Эти стоки при сбросах в водоёмы губительно влияют на их флору и фауну. В результате создания замкнутых систем водоснабжения это влияние снижается или устраняется.

Большое количество воды используется ТЭС в различных теплообменных устройствах для конденсации отработавшего пара, водо-, масло-, газо- и воздухоохлаждения. Для этих целей вода забирается из какого-либо поверхностного источника и при прямоточной схеме после использования в указанных устройствах возвращается обратно в те же источники. Эта вода вносит в используемый водоем большое количество теплоты и создает так называемое тепловое загрязнение его. Такого рода загрязнение воздействует на биологические и химические процессы, определяющие жизнедеятельность растительных и животных организмов, населяющих естественные водоемы, и нередко приводит к их гибели, интенсивному испарению воды с поверхностей водоемов, изменению гидрологических характеристик стока, повышению растворимости пород в ложах водоемов, ухудшению их санитарного состояния и к изменению микроклимата в отдельных районах.

Основными источниками теплового загрязнения водоемов являются конденсаторы турбин. Из них отводится приблизительно от половины до двух третей всего количества теплоты, получаемой от сгорания органического топлива, что эквивалентно 35--40 % энергии используемого топлива.

Считается, что для конденсации пара на каждую турбину типа К-300-240 требуется до 10 м 3 /с воды, а для турбины К-800-240 -- уже 22 м 3 /с, и все это количество воды покидает конденсатор с температурой не менее 30°С.

Агрессивность и вредное влияние на природу теплой и горячей воды значительно усиливаются одновременным ее отравлением сбросами загрязненных стоков от других источников.

Следует, однако, отметить, что при использовании оборотной системы водоснабжения повышение температуры в водохранилищах-охладителях ТЭС в определенных условиях может оказаться для народного хозяйства экономически вполне оправданным. Известно, например, что в средней полосе России такие водохранилища можно заселять теплолюбивыми растительноядными рыбами, обеспечивающими питательную продукцию 25--30 ц/га в год. Подогретая вода может использоваться также для обогрева теплиц и т. п. Использование отходов теплоты позволяет в этом случае создавать так называемые энергобиологические комплексы, над развитием и совершенствованием которых работает широкий круг ученых.

Вместе с тепловым загрязнением водоемов наблюдается аналогичное загрязнение и воздушного бассейна. Только примерно 30 % потенциальной энергии топлива превращается сегодня на ТЭС в электроэнергию, а 70 % ее рассеивается в окружающей среде, из них 10 % приходится на горячие газы, выбрасываемые через дымовые трубы.

Атомные электростанции и окружающая среда

Атомная энергетика (5,9% мирового потребления коммерческой энергии) после периода быстрого роста в 70-е годы и начале 80-х испытывает жесточайший кризис, чему причиной всплеск социальных противоречий, экологическая и политическая оппозиция во многих странах, технические трудности обеспечения возросших требований безопасности АЭС и проблема захоронения радиоактивных отходов, перерасход затрат на строительство и сильный рост себестоимости электроэнергии, произведенной на АЭС. Тем не менее у атомной энергетики есть хорошее будущее, причем, по-видимому, путь к успеху лежит на пути к реализации новых физических принципов. В последнее десятилетие количество работающих в мире реакторов и их установленная мощность растут чрезвычайно медленно (на 1 января 1996г. число их составило 437 при мощности 344 ГВт против 426 и 318 ГВт на 1 января 1990г.). В мире есть большое количество стран, энергетика которых в значительной мере основана на атомной энергии (Литва, Франция, Бельгия, Швеция, Болгария, Словакия, Венгрия имеют долю "атомного" электропотребления свыше 40%).

Атомные электростанции осуществляют значительно большие сбросы теплоты в водные бассейны, чем ТЭС, при одинаковых параметрах, что повышает интенсивность теплового загрязнения водоемов. Считается, что потребление охлаждающей воды на АЭС примерно в 3 раза больше, чем на современных ТЭС. Однако более высокий КПД АЭС с реакторами на быстрых нейтронах (40--42%), чем у АЭС на тепловых нейтронах (32-34%), позволяет примерно на одну треть сократить сброс теплоты в окружающую среду по сравнению со сбросом теплоты АЭС с водоохлаждаемыми реакторами.

Проблема радиационной безопасности эксплуатации АЭС является многоплановой и достаточно сложной. Главным источником возникновения опасной радиации является ядерное горючее. Изоляция его от окружающей среды должна быть достаточно надежной. С этой целью сначала ядерное топливо формируется в брикеты, материал матрицы которых удерживает большую часть продуктов деления радиоактивных веществ. Брикеты, в свою очередь, размещаются в тепловыделяющих элементах (твэлах), выполненных в виде герметически запаянных трубок из циркониевого сплава. Если все же произойдет хотя бы незначительная утечка продуктов деления из твэлов вследствие возникших в них неисправностей (что само по себе маловероятно), то они попадут в охлаждающий реактор реагент, циркулирующий по замкнутому контуру.

Реактор способен выдерживать огромные давления. Но и это не все: реактор окружает мощная железобетонная оболочка, способная выдержать самые сильные когда-либо отмечавшиеся ураганы и землетрясения и даже прямое попадание потерпевшего аварию самолета.

Наконец, для полной безопасности населения окружающего района осуществляется защита расстоянием, т.е. АЭС размещается на некотором удалении от жилых массивов.

Другим источником радиационной опасности являются различные радиоактивные отходы, неизбежно возникающие во время эксплуатации реакторов. Различают три вида отходов: газообразные, жидкие и твердые.

Загрязнение атмосферы газообразными (летучими) радиоактивными отходами через вентиляционную трубу ничтожно. В худшем случае оно не превышает нескольких % предельно допустимого уровня, установленного нашим законодательством и Международной комиссией по радиологической защите, требования которой значительно ниже. Это достигается путем использования высокоэффективной системы очистки газов, имеющейся на каждой АЭС.

Таким образом, с точки зрения сохранения чистоты атмосферы АЭС оказались несравненно благоприятнее ТЭС.

Вода, загрязненная низкоактивными радиоактивными веществами, дезактивируется и используется повторно, и лишь незначительное количество ее сливается в бытовую канализационную систему, при этом загрязнение от нее не превышает максимальных уровней, допустимых для питьевой воды.

Несколько сложнее решается проблема с очисткой и хранением высокоактивных жидких и твердых отходов. Трудность здесь состоит в том, что такие радиоактивные отходы не могут быть искусственно нейтрализованы. Естественный радиоактивный распад, который для некоторых из них длится сотни лет, является пока единственным средством устранения их радиоактивности.

Вследствие этого высокоактивные жидкие отходы должны быть надежно захоронены специально для этого в приспособленных камерах. Предварительно отходы подвергают "отвердению" путем нагрева и выпаривания, что позволяет значительно (в сотни раз) уменьшить их объем.

Твердыми отходами АЭС являются детали демонтированного оборудования инструмент, отработавшие фильтры для очистки воздуха, спецодежда, мусор и т.д.

Эти отходы после сжигания и прессования для уменьшения габаритов помещаются в металлические контейнеры и также захораниваются в подземных камерах (траншеях).

Основными радиоактивными отходами АЭС являются отработавшие твэлы, которые содержат уран и продукты деления, в основном плутоний, остающийся опасным в течение сотен лет. Они также подлежат захоронению в специальных подземных камерах. Чтобы предотвратить растекание радиоактивных отходов при возможных разрушениях подземных камер, отходы предварительно превращают в твердую стеклообразную массу. Создаются также специальные установки для переработки р/а отходов.

Некоторые страны, в частности Англия и отчасти США, производят захоронение отходов в специальных контейнерах, опускаемых на дно морей и океанов. Такой способ захоронения отходов таит в себе громадную потенциальную опасность радиационного загрязнения морей в случае разрушения контейнеров под воздействием коррозии.

Чтобы полностью устранить радиационную опасность АЭС, их ядерные реакторы снабжают практически безотказной аварийной защитой; резервными системами охлаждения, срабатывающими при внезапном повышении температуры; устройствами, удерживающими осколки радиоактивных веществ; запасными резервуарами на случай выброса радиоактивных газов. Все это при надлежащем уровне надежности оборудования и его эксплуатации приводит к тому, что атомные электростанции практически не оказывают загрязняющего воздействия на окружающую среду (Менеджмент …, 2007).

Однако потенциальная опасность выброса в атмосферу значительного количества радиоактивных продуктов все же имеется. Она реально может возникнуть при аварийном нарушении герметичности защитных барьеров, которые воздвигаются на пути возможного распространения радиоактивных веществ.

Радиационная безопасность АЭС для окружающей среды в этом случае определяется надежностью указанных защитных барьеров, а также эффективностью работы технологических схем, осуществляющих последующее поглощение и удаление радиоактивных веществ, проникающих через указанные барьеры.

На рис. 3 изображена общая схема воздействия АЭС на окружающую среду.

Рассмотренные некоторые вопросы радиационной безопасности касаются только АЭС, работающих на тепловых нейтронах. Для АЭС на быстрых нейтронах возникают дополнительные проблемы обеспечения радиационной безопасности, связанные, в частности, с необходимостью захоронения таких нарабатываемых как америций и кюрий.


Рис. 3. Влияние АЭС на окружающую среду:

/ -- реактор; 2 -- парогенератор; 3 -- турбина; 4 -- генератор; 5 -- подстанция; 6 -- конденсатор; 7 -- конденсатный насос; 8 -- регенеративный водоподогреватель; 9 -- питательный насос; 10,12 -- циркуляционные насосы; 11 -- градирня; 13 -- линия электропередачи; 14 -- потребители электроэнергии.

Гидроэлектростанции и окружающая среда

Гидроэнергетика (около 6,7%) динамично развивавшаяся, также переживает трудный период. Одна из наиболее серьезных проблем связана с затоплением земель при строительстве ГЭС. В развитых странах, где значительная часть гидроэнергетического потенциала уже освоена (в Северной Америке -- более 60 %, в Европе -- более 40 %), практически нет подходящих для строительства ГЭС мест.

Проектирование и строительство крупных ГЭС ведется преимущественно в развивающихся странах, а наиболее крупные программы реализуются в Бразилии и Китае. Однако использование оставшегося достаточно большого гидроэнергетического потенциала в развивающихся странах ограничивается острой нехваткой инвестиционного капитала в связи с ростом внешнего долга и экологическими проблемами гидроэнергетики. По-видимому, трудно ожидать в будущем заметного увеличения роли гидроэнергии в мировом энергобалансе, хотя для целого ряда стран, прежде всего развивающихся, именно гидроэнергетика может дать существенный импульс экономике.

Технологический процесс производства гидроэнергии экологически безвреден. При нормальном состоянии оборудования ГЭС отсутствуют какие-либо вредные выбросы в окружающую среду. Но создание крупных водохранилищ ГЭС на равнинных реках (Россия -- единственная страна мира, где осуществлено массовое строительство мощных ГЭС на таких реках) практически всегда влечет за собой ряд изменений в природных условиях и объектах народного хозяйства затрагиваемой территории.

Положительное значение водохранилищ как регуляторов стока распространяется на территории значительно больше, чем те, на которых оно располагается. Так, энергетический эффект регулирования стока проявляется не только в тех энергосистемах, в которых работает данная ГЭС, но при достаточно высокой ее мощности и в их объединениях. Орошение земель и защита плодородных угодий от наводнений, осуществляемые с помощью водохранилищ ГЭС, охватывают площади, в ряде случаев значительно превышающие площади затоплений.

Орошение земель, осуществляемое с помощью Волгоградского водохранилища, охватывает огромную территорию Заволжья и Прикаспийской низменности. Однако нередко естественные неуправляемые процессы, происходящие в водохранилищах, приводят к неблагоприятным последствиям, иногда достаточно широкого плана.

Различают прямое и косвенное воздействие водохранилищ на окружающую природу. Прямое воздействие проявляется прежде всего в постоянном и временном затоплении и подтоплении земель. Большая часть этих земель относится к высокопродуктивным с/х и лесным угодьям. Так, доля с/х земель, затопленных водохранилищами Волжско-Камского каскада ГЭС, составляет 48% всей затопленной территории, причем некоторые из них расположены в пойменной зоне, отличающейся высоким плодородием. Около 38% затопленных земель составили леса и кустарники. В пустынной и полупустынной зонах три четверти всех затопленных земель приходится на пастбища.

Косвенные воздействия водохранилищ на окружающую среду изучены не так полно, как прямые, но некоторые формы их проявления очевидны и сейчас. Так обстоит дело, например, с изменением климата, проявляющимся в зоне влияния водохранилища в повышении влажности воздуха и образовании довольно частых туманов, уменьшении облачности в дневное время над акваторией и уменьшения там среднегодовых сумм осадков, изменении направления и скорости ветра, уменьшении амплитуды колебания температуры воздуха в течение суток и года.

Опыт эксплуатации отечественных водохранилищ показывает также, что количество осадков в прибрежной зоне заметно увеличивается, а среднегодовая температура воздуха в зоне крупных южных водохранилищ несколько снижается. Наблюдаются изменения и других метеорологических показателей. Изменение климата вместе с подтоплением и переформированием берегов иногда ведет к ухудшению состояния прибрежной древесной растительности и даже ее гибели.

К косвенным воздействиям водохранилищ следует отнести также появление территорий, которые становятся менее пригодными для использования в хозяйственных целях (например, острова в верхнем бьефе, осуходоленные поймы в нижнем бьефе и др.). Нельзя также не отметить влияния создания водохранилищ на рыбное хозяйство. Здесь следует указать два обстоятельства. С одной стороны, сооружение плотины ГЭС препятствует проходу рыбы к местам нерестилищ, а с другой, требования рыбного хозяйства к режиму стока полностью противоречат задачам регулирования стока, т.е. той цели, для которой и создается водохранилище.

Конечно, было бы неправильно утверждать, что все прямые и косвенные воздействия водохранилищ ГЭС на окружающую среду (а их гораздо больше, чем здесь рассмотрено) имеют только негативную сторону. Обычно каждое из них и совокупность обладают комплексом как отрицательных, так и положительных свойств. Другие источники первичного электричества (солнечная, ветровая, геотермальная энергия) находясь лишь на пути к промышленному освоению, и в настоящее время их суммарный вклад в мировой энергобаланс измеряется долями %. Такое положение вызывается причинами экономического характера. Однако по мере технического прогресса, появление новых технологических разработок и перехода к массовому производству оборудования себестоимость электроэнергии снижается, приближаясь к уровню, характерному для традиционной энергетики (Менеджмент …, 2007).

Энергетика является важнейшей отраслью хозяйства, без которой невозможна деятельность человека вообще. Любое производство требует затрат , поэтому человек издавна озабочен поисками ее источников.

Главным источником энергии на Земле является . Но солнечную энергию трудно преобразовать в формы, удобные для использования, хотя электростанции (гелиостанции) существуют в некоторых странах с большим количеством солнечных дней в году. Такие станции действуют и в космосе; применяют солнечные батарейки и для работы счетных машин, однако доля использования в настоящее время мала, и стоит задача расширения использования этой энергии, так как она является неисчерпаемым природным ресурсом.

Солнечная энергия относится к нетрадиционным видам используемой энергии. К нетрадиционным относят также , гейзеров, морских и , приливно-отливную и геотермальную энергии. Эти виды энергии человечеству еще предстоит освоить, тем более что они являются неисчерпаемыми энергетическими ресурсами.

Человечество в своей деятельности использует тепловую и электрическую энергии, полученные или за счет сжигания разных видов топлива (теплоэлектроцентрали - ТЭЦ), или за счет использования энергии рек (гидроэлектростанции - ГЭС), или атомной энергии распада ядер тяжелых изотопов (атомные электростанции - АЭС).

Теплоэлектростанции (ТЭС) в качестве топлива применяют природный и попутный газ, продукты переработки (мазут и другое жидкое топливо), каменный и бурый угли, торф (твердое топливо).

При сгорании газа выделяется наименьшее количество вредных загрязнителей, поэтому газообразное топливо считается наиболее экологически чистым.

Сгорание жидкого и твердого видов топлива сопровождается образованием вредных газов (диоксида серы и оксидов азота), возможно образование пылевых аэрозолей, получается зола. ТЭС являются вторым после автотранспорта загрязнителем . Зола, получающаяся после сжигания жидкого и особенно твердого топлива, является многотоннажным отходом энергетики и требует обязательной утилизации.

АЭС с точки зрения загрязнения атмосферы являются более экологичными, чем ТЭС, но из-за возможности радиационного заражения среды - самый опасный в экологическом отношении вид производства.

Очень остро стоит вопрос с обезвреживанием отходов атомного топлива и эта проблема в настоящее время практически не решена, так как захоронение радиоактивных отходов в могильниках не является экологически грамотным способом их утилизации и обезвреживания отходов, поскольку их действие не уничтожается, а при нарушении могильника возможно заражение природной среды.

ГЭС практически не загрязняют среду обитания различными вредными отходами, но при их строительстве происходит сильное разрушение природных биогеоценозов, затопление больших территорий, изменение микроклимата региона, создаются препятствия для осуществления жизнедеятельности многих организмов (например, рыбы не могут достичь мест своего нереста, звери лишаются привычных мест обитания и т. д.). Экономические и социальные затраты на строительство ГЭС далеко не всегда оказываются оправданы.

Значительным экологическим загрязнением является поток электромагнитных излучений, возникающих при передаче электроэнергии на большие расстояния высоковольтными линиями электропередач. Эти излучения оказывают большое отрицательное влияние и на человека, и на животных.

Нормальное функционирование ТЭС, АЭС, ГЭС связано с использованием транспортных средств, поэтому природная среда загрязняется и за счет работы этих средств. Велико тепловое загрязнение различными предприятиями энергетики. Вносят свой вклад эти предприятия и в шумовые, и в вибрационные загрязнения.

Краткое рассмотрение влияния энергетики на окружающую природную среду показывает, что и для этой отрасли важна природоохранная деятельность.

Обзор природоохранных мероприятий в энергетике

Целый ряд процессов, применяемых в энергетике, на современном этапе не может быть рационально реализован с точки зрения правильных экологических решений. Так, строительство ГЭС всегда будет сопровождаться отторжением территорий, их затоплением, гибелью биогеоценозов. Но при этом есть возможность четкого учета всех мероприятий по более тщательной подготовке затопляемых территорий и оптимальному использованию ресурсов этих территорий.

Как и в других отраслях промышленности, важным является комплексное использование сырья и отходов. Так, твердые отходы (золы) ТЭС находят применение в строительстве и сельском хозяйстве. Важна задача полного улавливания отходящих газов ТЭС с целью утилизации оксидов азота и серы для получения из них соединений серы и азота для дальнейшего их применения в других отраслях хозяйства.

Важнейшими природоохранными действиями в области энергетики является освоение других видов энергии, являющихся нетрадиционными и более безопасными с экологической точки зрения. Ярким примером такого освоения источников энергии является энергетика Исландии, основанная на применении тепловой энергии горячей воды гейзеров. Перспективным является способ добычи тепловой энергии за счет бурения скважин и вывода на поверхность горячих вод с больших глубин . Но в настоящее время это экономически недостижимо из-за сложностей технических решений.

На заре цивилизации широко использовалась энергия ветра, но в связи с развитием энергетики за счет сжигания топлива эта отрасль утратила свое значение, но теперь ее возрождают вновь из-за усложнения экологической обстановки на Планете.

К сожалению, не покат решения проблемы уменьшения загрязнений среды электромагнитными излучениями - увеличение расстояния нахождения человека от линий электропередач не снижает отрицательного воздействия ЛЭП. Необходимо искать пути переноса электроэнергии другими способами либо обеспечивать энергией тот или иной объект локализованными методами.

Важным (опосредованным) природоохранным мероприятием является оптимизация расхода электрической и тепловой энергии. Человек часто «греет улицу». Необходимо совершенствовать теплоизоляцию, что приведет к экономии энергии, а вместе с этим уменьшит необходимость выработки энергии, что в свою очередь будет способствовать улучшению экологической ситуации.

ЛЕКЦИЯ. Тема: Экологические проблемы энергетики

1. Источники энергии.

2. Экологические проблемы традиционной энергетики.

3. Альтернативные источники энергии.

4. Энергосбережение.

Источники энергии

Основой развития цивилизации является энергетика. От ее состояния зависят темпы научно-технического прогресса, интенсификации производства и жизненный уровень людей.

Источники энергии, используемые для производства энергии, разделяют на возобновляемые и не возобновляемые .

К не возобновляемым источникам энергии относят ископаемое топливо: уголь, нефть, газ, торф, горючие сланцы и ядерную энергию деления урана и тория.

Возобновляемые источники энергии: энергия солнца, ветра, геотермальная энергия, гидроэнергия рек, разные виды океанической энергии (морских волн, приливов и отливов, разницы температур воды и др.).

Возобновляемые источники неисчерпаемы и их использование не нарушает тепловой баланс Земли.

Использование не возобновляемых источников энергии приводит к повышению температуры на Земле, истощению этих ресурсов, загрязнению окружающей среды.

Экологические проблемы традиционной энергетики

Основным способом получения энергии на сегодня является сжигание угля, нефти (мазута), природного газа, горючих сланцев на тепловых станциях (ТЭС) . Примерно 70% электроэнергии вырабатывается на ТЭС. Теплоэлектроцентрали (ТЭЦ) кроме электрической электроэнергии вырабатывают тепловую энергию в виде подогретой воды и пара.

В мировом масштабе гидравлические станции (ГЭС) обеспечивают получение около 7% электроэнергии.

Атомные электростанции (АЭС) вырабатывают около 20% электроэнергии, причем в ряде стран она является преобладающей (Франция ~ 74%, Бельгия ~ 61%, Швеция ~ 45%).

Воздействие тепловой энергетики на окружающую среду

Влияние тепловой энергетики на окружающую среду зависит от вида используемого топлива. Наиболее чистым топливом является природный газ, далее следуют нефть (мазут), каменный уголь, бурый уголь, сланцы.



В результате работы ТЭС в связи с недостаточной очисткой топочных газов и сжиганием низкосортного топлива, в атмосферу поступают различные газообразные загрязнители : основные из них: угарный газ (СО), углекислый газ (СО 2) , оксиды азота (NO, NO 2), углеводороды (C m H n). а также высокотоксичное вещество бензапирен. ТЭС, работающие на угле, являются также источником выбросов диоксида серы (SO 2). Поступление загрязнителей в атмосферу вызывает массу экологических проблем (парниковый эффект, смоги, кислотные дожди, нарушение озонового слоя и др.).

При сжигании угля образуются также зола и шлаки, для складирования, которых требуются огромные территории земель . Зола и шлак в некоторых случаях содержат в своем составе, кроме нетоксичных составляющих, тяжелые металлы, радиоактивные элементы , которые разносятся ветром и накапливаются на прилегающей территории.

Большие объемы воды расходуются на ТЭС на охлаждение агрегатов.

ТЭС является источником теплового загрязнения . Вода, используемая для охлаждения агрегатов, проходит охлаждение в градирнях, прудах–охладителях и зачастую недостаточно охлажденная, сбрасывается в водные объекты, обусловливая их тепловое загрязнение. Выбросы большого количества тепла и углекислого газа способствуют повышению температуры на Земле.

Значительные территории земель отводятся при добыче угля для складирования пустой породы. Отвалы пустых пород пылят, часто самовозгораются и являются источников выбросов в атмосферу продуктов их горения.

Воздействие ядерной энергетики на окружающую среду

Ядерная энергетика до недавнего времени рассматривалась как наиболее перспективная.

Первая АЭС была введена в эксплуатацию в Обнинске под Москвой в 1954 году. Мощность ее составляла 5000 квт. В середине 80-х годов в мире насчитывалось более 400 АЭС. Основными преимуществами атомной энергетики, по сравнению с тепловой, является меньший объем потребляемого топлива и отсутствие постоянных выбросов в атмосферу продуктов сгорания.

За 30 лет существования АЭС в мире произошло три больших аварии: в 1957 г. – в Великобритании; в 1979 г. в США и особенно в 1986 г. на Чернобыльской АЭС (крупнейшая катастрофа в мире).

Во время аварии в Чернобыле в атмосферу поступило около 450 типов радионуклидов. Наиболее распространенные радионуклиды: короткоживущие йод – 131 и долгоживущие – стронций-90, цезий-131, усваиваемые живыми организмами. Искусственный элемент плутоний, который образуется в реакторах АЭС, наиболее токсичное вещество, созданное человеком.

После Чернобыльской катастрофы главную опасность АЭС стали связывать с возможностью аварий . Отдельные страны приняли решение о полном запрете на строительство АЭС. В их числе Бразилия, Швеция, Италия, Мексика.

Топливно-энергетический комплекс АЭС включает добычу урановой руды, выделение из нее урана (обогащение), производство ядерного топлива, производство энергии на АЭС, обработку, транспортировку и захоронение радиоактивных отходов.

Радиоактивные отходы образуются на всех стадиях топливно-энергетического цикла и требуют специальных методов обращения с ними. Наиболее опасным является отработанное в реакторе топливо. В процессе выгорания ядерного топлива выгорает лишь 0,5 – 1,5%, остальную массу составляют радиоактивные отходы. Часть их подвергается переработке, основная же масса – захоронению. Технология захоронения очень сложная и дорогостоящая.

АЭС является источником теплового загрязнения . На единицу выпускаемой продукции, на АЭС в атмосферу выбрасывается в 2 – 2,5 раза больше тепла, чем на ТЭС. Объем подогретых вод на АЭС также значительно больше.

Срок эксплуатации АЭС составляет около 30 лет. Значительные затраты требуются для вывода АЭС из эксплуатации . Основное решение этого вопроса заключается в устройстве саркофага над ними и дальнейшего обслуживания его в течение длительного времени.