Понятие о вибрации, параметры, характеризующие вибрацию, единицы измерения вибрации, допустимые уровни вибрации. Основные параметры и характеристики вибрации К основным параметрам вибрации относятся

Общие сведения о вибрации

Человек в современном индустриальном обществе постоянно соприкасается с вибрационными явлениями как на производстве, в транспорте, так и в быту. Источниками вибрации являются различные машины, технологическое оборудование и транспортные средства. Рост количества машин, повышение их мощности, увеличение интенсивности и скорости транспортных потоков приводит к возрастанию воздействия вибрации на человека.

Тенденции развития техники свидетельствуют о том, что качественные изменения механизмов и машин достигаются главным образом за счет увеличения скоростных и силовых параметров при одновременном снижении их материалоемкости. При этом неизбежно возрастание динамических нагрузок, механических воздействий и, следовательно, вибрационной активности выпускаемых машин и производственного оборудования. Распространению вибрации на современных предприятиях способствует также широкое использование механизмов и машин ударного, возвратно-поступательного, вибрационного принципов действия, транспортирующих агрегатов, ручных и передвижных машин различных типов и назначения.

Отсюда вытекает необходимость ограничения вибрационного воздействия на человека путём совершенствования конструкции механизмов и средств защиты от вибрации, а также и ужесточения нормативных актов.

Производственная вибрация выступает как вредный, а иногда и опасный фактор к самим машинам, так как интенсифицирует их износ, снижает их надежность и долговечность, повышает уровни вибрации, излучаемого шума и т.п. По величине интенсивности вибрации принято судить о качестве машины и ее техническом состоянии. Распространяясь по строительным конструкциям и грунту, вибрация воздействует на другие объекты, вызывая разрушение конструкций, трубопроводов различного назначения и ухудшая работу приборов и точных станков.

Контакт человека с вибрирующими объектами отрицательно сказывается на его здоровье и работоспособности: повышается утомляемость, снижается производительность и качество труда, повышается общая заболеваемость и может развиться профессиональное заболевание – вибрационная болезнь.

Вибрационная патология как профзаболевание сегодня во всех развитых странах занимает 2-е место после пылевой, а значит обеспечение вибробезопасных условий труда имеет важнейшее значение для производства

Физические характеристики вибрации

По ГОСТ 24346 – 80 под вибрацией понимается движение точки или механической системы, при котором происходит поочередное возрастание и убывание во времени значений любой величины, её характеризующей.

По механизму генерации различают вибрации с силовым, кинематическим и параметрическим возбуждением.

Силовое возбуждение вибрации – это возбуждение вибрации системы вынуждающими силами и моментами. Источниками их являются: возвратно-поступательные движущиеся системы (кривошипно-шатунные механизмы, ручные вибраторы и перфораторы, вибротрамбовки, виброплиты, вибробункеры и т.п.); неуравновешанные вращающиеся массы (ротора насосов и ГТД, ручные электрические и пневматические шлифовальные машины, режущий инструмент станков, вентиляторы и т.п.); ударные системы (ковочные и штамповочные молоты, подшипниковые узлы, зубчатые передачи и т.п.).

Кинематическое возбуждение вибрации – возбуждение вибрации системы сообщением каким-либо ее точкам заданных движений, не зависящих от состояния системы. Причинами его являются воздействие профиля дороги на автомобили и строительно-дорожные машины, электрокары и ручные тележки в помещениях, колебания пола помещений и т.п.

Параметрическое возбуждение вибрации – возбуждение колебаний и вибрации системы не зависящим от состояния системы изменением во времени одного или нескольких ее параметров (массы, момента инерции, коэффициентов жесткости и сопротивления). Источниками являются двигатели внутреннего сгорания при изменении давления газов в цилиндрах, пневматические двигатели и т.п.

По характеру изменения во времени различают колебания детерминированные (периодические или почти периодические), случайные (стационарные или нестационарные) и импульсные или затухающие, которые могут быть простыми и сложными.

Сложные колебательные процессы могут быть представлены в виде простых гармонических синусоидальных колебаний с помощью ряда Фурье.

Колебания подразделяются на свободные и вынужденные. Свободные колебания – вибрации системы, происходящие без переменного внешнего воздействия и поступления энергии извне. Вынужденные колебания – вибрации системы, вызванные и поддерживаемые силовым или кинематическим возбуждением.

Основными понятиями теории колебаний для вибрации являются:

1) вибрационные параметры: виброперемещение, виброскорость и виброускорение;

2) механический импеданс;

3) собственная частота.

Основными величинами, характеризующими вибрацию, происходящую по синусоидальному закону, являются:

· амплитуда виброперемещения S а – величина наибольшего отклонения колеблющейся точки от положения равновесия;

· амплитуда виброскорости V а – максимальное значение скорости колеблющейся точки;

· амплитуда виброускорения а а – максимальное значение ускорения колеблющейся точки;

· период колебаний Т – наименьший интервал времени, через который при периодических колебаниях повторяется каждое значение колеблющейся величины, характеризующей вибрацию;

· частота колебаний f – величина, обратная периоду колебаний.

Виброскорость и виброускорение связаны с виброперемещением и частотой ко­лебаний соотношениями:

V = 2 p × f × S и a = (2 p × f) 2 × S

Учитывая, что абсолютные значения величин, характеризующих вибрацию, изменяются в очень широких пределах, в практике виброакустических исследований и инженерных расчетах используют логарифмические уровни колебаний. Под ним понимается сравнительная характеристика колебаний двух одноименных физических величин, пропорциональная десятичному логарифму отношения оцениваемого и исходного значений величины

L = 20 × lq (b × b о –1),

где b – оцениваемое значение величины (скорость, ускорение и т.п.);

b о – исходное значение величины (скорости, ускорения и т.п.).

Так, например, уровни виброскорости и виброускорения определяются соответственно как

L V = 20 × lq (V × V o –1) и L A = 20 × lq (a × a o –1),

где V и а – оцениваемые значения соответственно виброскорости и виброуско­рения;

V o и а о – исходные (пороговые) значения виброскорости и виброускорения.

Согласно международному соглашению принято:

V о = 5 × 10 – 8 м/с и а о = 3 × 10 – 4 м/с 2 .

Уровни колебаний (вибрации) измеряются в децибелах (дБ).

В общем случае физическая величина, характеризующая вибрацию (например, виброскорость) является некоторой функцией времени: V = V(t ). Математическая теория показывает, что такой процесс можно представить в виде суммы бесконечно долго длящихся гармонических (синусоидальных) колебаний с различными амплитудами и периодами. В случае периодических колебаний частоты этих составляющих кратны основной частоте колебаний (процесса):

f n = n × f 1 ,

где n = 1,2,3,..;

f 1 – основная частота колебаний.

Основной характеристикой в производственной безопасности или охране труда является спектр вибрации, под которым понимается совокупность соответствующих гармоническим составляющим значений величины, характеризующей колебания (вибрации), в которой указанные значения располагаются в порядке возрастания частот гармонических составляющих. Периодическим и почти периодическим колебаниям соответствует дискретный спектр, непериодическим – непрерывный спектр. Если колебания представляют собой наложение периодических и случайных колебаний, то спектр имеет смешанный характер.

Интенсивность вибрационных воздействий на человека, приборы и другие объекты зависит от частоты. Поэтому весь диапазон частот колебаний принято разбивать на отрезки (полосы частот) и определять уровни вибрации для каждой полосы в отдельности. В качестве стандартных частотных полос при оценке вибрационной безопасности принимают октавные полосы, у которых отношение верхних граничных частот к нижним частотам равно 2. Каждую октавную полосу принято обозначать среднегеометрическим значением ее граничных частот, определяемым по формулам

f c = (f max × f m in) 0,5 = 2 0,5 f min @ 1,41 f min ,

где f min – нижняя, а f max – верхняя граничная частота, Гц, причем f max = 2 f min .

При необходимости октавные полосы делят на третьоктавные, для которых f max = 2 1/3 f min @1,26 f min . Например, первая октавная полоса имеет граничные частоты 0,7 и 1,4 Гц, а ее среднегеометрическая частота f c = 1 Гц; следующая, соответственно 1,4….2,8 Гц и 2 Гц и т. д.

Механический импеданс (Z) определяется как отношение вынуждающей силы (F ), приложенной к системе, к результирующей колебательной скорости υ в точке приложения силы

Собственная частота - это частота свободных колебаний системы, т.е. колебаний без переменного внешнего воздействия и поступления энергии.

Рис. 11.1. Собственная часто­та колебаний

Собственная частота колебаний системы (f 0 ), представленной на рис. 11.1, определяется по формуле:

где К - жесткость пружины; М - масса груза.

При равенстве собственной частоты колебаний системы частоте вынужденных колебаний возникает явление резонанса, приводящее к резкому увеличению амплитуды колебаний.

Вибрационная безопасность персонала производственной и социально-бытовой сферы деятельности

Учебно-методическое пособие для практических занятий по БЖД студентов АлтГТУ всех форм обучения

Барнаул 2011

Стуров Д. С., Гергерт В.Р., Калин А.Ю. Вибрационная безопасность персонала производственной и социально-бытовой сферы деятельности: Учебно-методическое пособие для практических занятий по БЖД/ Алт. гос. техн. уни-т им. И.И. Ползунова – Барнаул, изд-во АГТУ, 2011

Учебно-методическое пособие для практических занятий по БЖД рассмотрено методической комиссией кафедры БЖД и одобрено для использования.

Общие теоретические сведения о вибрации.

В основу разработки учебно-методического пособия положены государственные нормативно-правовые документы:

· ГОСТ 12.1.012-90. ССБТ, Вибрационная безопасность.

· СН 2.2. 4/2. 1.8.566-96, Санитарные нормы. Производственная вибрация, вибрация в помещениях жилых и общественных зданий.

Термины и определения, источники и причины вибрации.

Вибрация – это механические колебания упругих тел и материалов, отдельных частей машин, механизмов, фундаментов, строительных конструкций и т.п., при воздействии на них знакопеременной возмущающей силы.

С физической точки зрения между шумом (т.е. звуковыми колебаниями) и вибрацией принципиальной разницы нет. Разница имеет место лишь в восприятии колебаний: вибрация воспринимается вестибулярным аппаратом и органами осязания, а шум – органом слуха. Механические колебания упругих тел с частотой до 20 Гц воспринимаются организмом как вибрация, фактически это инфразвук, т.е. неслышимые колебания, а колебания с частотой более 20 Гц – воспринимаются одновременно и как вибрация и как звук. Примером этому может служить струна музыкального инструмента – она колеблется и звучит.

Источниками вибрации являются: различные технологические процессы (рубка металла, механическая обработка, размол и измельчение продукта и т.д.); машины, механизмы и их рабочие органы; ручные механизированные инструменты (электродрели, пневмонаждаки и т.п.); органы ручного управления машинами и оборудованием, и т.д.

Причины возникновения вибрации во многом обусловлены техническим прогрессом, характеризующимся увеличением скоростей движения, возрастанием мощностей, усилий, производительности оборудования. Но современная техносфера не совершенна: имеют место неуравновешенность и неравномерность движения механизмов, неточность изготовления, увеличенные зазоры в шарнирных сочленениях, неоднородность материалов движущихся деталей машин и механизмов и т.п. Всё это вместе или по отдельности является источником возникновения возмущающих знакопеременных сил, порождающих вибрацию.

Основные параметры и характеристики вибрации.

Техногенные вибрации могут быть простые, когда колебания совершаются по одной из трёх координат (X,Y,Z) и сложные, когда колебания объекта происходят одновременно по всем координатным направлениям с разной амплитудой и частотой.

Простейшим видом колебаний являются гармонические синусоидальные колебания по одной из трёх осей координат (рисунок 1).

Рисунок 1. Гармонические синусоидальные колебания точки m:

Колебательное смещение (виброперемещение)

Колебательная скорость (виброскорость)

Колебательное ускорение (виброускорение)

Основными параметрами характеризующими вибрацию являются:

Амплитуда смещения колеблющейся точки m от положения равновесия.

Формула движения точки m:

, м (1)

где - максимальное смещение точки от положения равновесия (от оси рис.1)

Круговая частота,

Частота колебаний, Гц.

- 1 Герц (Гц) равен числу периодов колебаний в 1 секунду.

. Если, например, период одного колебания равен 1 с, то

частота Гц

Если число периодов колебаний в 1 секунду будет равно 10 , то время одного периода колебаний равно 0,1 с, и тогда Гц.

Максимальное значение амплитуды вибросмещеня по формуле (1) будет равно

Скорость колебаний (виброскорость) точки ,

Максимальное значение виброскорости (амплитуда виброскорости) , м/с

Виброускорение точки ,

Максимальное значение виброускорения по формуле (3) равно

, м/с

В общем случае физические величины, характеризующие вибрацию (например, виброскорости), являются некоторой функцией времени, т.е. . В таких случаях, по математической теории, колебательный процесс представляется в виде суммы бесконечно длящихся синусоидальных колебаний с различными частотами и амплитудами. Это называют полигармоническим колебательным процессом. При этом процесс может быть периодическим или квазипериодическим, частотные спектры которых считаются дискретными. (рис.2а)

Если же колебательный процесс является случайным или одиночным кратковременным – спектр вибрационных параметров считается непрерывным (рис.2б).

В реальных условиях наиболее часто вибрация представляется в виде периодических полигармонических колебаний. Тогда в силу специфических свойств органов чувств человека определяющими, т.е. действующими на организм человека, являются не максимальные значения параметров вибрации (амплитуды, скорости и ускорения), а среднеквадратичные их значения (это примерно 0,67…0,75 от их максимума). Более точное определение среднеквадратичных значений виброскорости и виброускорения выполняется по формулам:

; (4)

где - число составляющих гармоник в спектре

- значения колебательной скорости и ускорения.

В практике виброизмерений абсолютные значения параметров вибрации изменяются в очень широких пределах. Например, амплитуда колебаний при морской качке доходит до 10 метров, а амплитуда колебаний на корпусе домашней электробритвы всего лишь 0,01 мм. Точно также в широких пределах изменяются скорость и ускорение. Отличие максимального значения параметров от минимально ощутимого (порогового) значения достигает , т.е. в один миллион раз максимум параметра больше его минимума. Это создаёт большие неудобства в практических расчётах и исследованиях. В целях резкого сокращения измерительных шкал, для удобства пользования, применяют логарифмические шкалы величины параметров вибрации, получившие название – уровни виброскорости , дБ и уровни виброускорений , дБ (децибел):

·
, дБ (5)

·
, дБ (6)

где - пороговое (минимально ощутимое организмом человека) значение виброскорости;

а о =1·10 -6 м/с 2 =1·10 -4 см/с 2 =1·10 -3 мм/с 2 - пороговое (минимально ощутимое организмом человека) значение виброускорения;

б) 0
a) 0
f=2 Гц
f=4 Гц
f=6 Гц
f=8 Гц
f=10 Гц
f, Гц
L V
A V
t, c
f, Гц
A V
L V
t, c

Рисунок 2: Полигармонические спектры производственной вибрации.

При частоте колебаний ниже 1 Гц тело человека движется как единое целое – внутренние органы не испытывают относительных перемещений. Такие колебания хотя и неприятны, но не опасны (качка). Следствием такой вибрации является морская болезнь. Большинство внутренних органов имеют собственную частоту колебаний в диапазоне6–9 Гц. Воздействие на организм человека внешних колебаний с такими же частотами очень опасно, так как они могут вызвать механические повреждения или даже разрыв органов. Длительное воздействие интенсивной общей вибрации может быть причиной вибрационной -бо лезни – нарушений физиологических функций организма, обусловленных преимущественно воздействием вибрации на центральную нервную систему.

Эти нарушения проявляются в виде головных болей, головокружений, плохого сна, раздражительности, пониженной работоспособности, нарушений сердечной деятельности.

При частотах выше 100 Гц вибрация может действовать только как локальная. Локальная вибрация при длительном воздействии вызывает спазмы сосудов, вследствие чего происходит ухудшение снабжения кровью конечностей.

Кроме того, локальная вибрация воздействует на нервные окончания, мышечные и костные ткани, выражающиеся в нарушении чувствительности кожи, окостенений сухожилий мышц, болях и отложениях солей в суставах кистей рук и пальцев, что приводит к деформациям и уменьшению подвижности суставов. Одновременно наблюдаются нарушения деятельности центральной нервной системы.

Организм особенно чувствителен к вертикальным сотрясениям, когда человек стоит на вибрирующей поверхности. Наиболее вредным для человека является одновременное действие вибрации, шума и низкой температуры.

1.2. Параметры вибрации и их нормирование

1.2.1. Вибрация характеризуется тремя параметрами: смещением из положения равновесия, колебательной скоростью и колебательным ускорением.

Исходя из психофизиологических соображений и для удобства вычислений, параметры вибрации выражают в логарифмических единицах. Эти логарифмические единицы называют уровнями, выражают в децибелах и обозначают буквой L с соответствующим индексом:

уровень смещения L = 20 lg x ;

уровень колебательной скорости L v = 20 lg V ;

– уровень колебательного ускорения L a = 20 lg a , a0

где x 0 , V 0 , a 0 – опорные значения, установленные международными соглаше-

ниями: x 0 = 8 10-12 м; V 0 = 5 · 10-8 м/с; a 0 = 3 · 10-4 м/с2 .

В практике вибрации обычно измеряют и нормируют в октавных полосах частот, т. е. полосах, у которых отношение граничных частот f гр2 /f гр1 = 2.

Октавные полосы стандартизированы международным соглашением. Для общей вибрации среднегеометрические частоты октавных полос образуют сле-

дующий ряд: 1; 2; 4; 8; 16; 31,5; 63; для локальной вибрации: 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц.

1.2.2. Нормируемыми характеристиками вибрации, определяющими ее воздействие на человека, являются среднеквадратичные значения виброскорости V в м/с и виброускорения a в м/с2 или их логарифмические уровни L V и L a в дБ соответственно.

Вибрация, воздействующая на человека, нормируется отдельно для каждого установленного направления в каждой из октавных полос.

Гигиенические нормы вибрации, воздействующей на человека в производственных условиях, указаны в СН2.2.4/2.1.8.565-96 «Производственная вибрация. Вибрация в помещениях и общественных зданиях» (Приложение 1). Нормируемыми параметрами вибрации на подвижном составе являются уровни амплитудных значений колебательной скорости L v и колебательного ускорения L a , а также учитывается повторяемость этих величин (СН 2.9.4/21.8.566-96).

На локомотивах вибрации нормируют по ускорениям (12.2.056-81). Допустимые уровни вибраций для основных видов работ устанавливают-

ся ГОСТ 12.2.056 – 2004 «Вибрационная безопасность и общие требования».

1.3. Мероприятия по устранению вибраций

Общие мероприятия по борьбе с вредным воздействием вибрации можно объединить в три группы: инженерно-технические, организационные и профилактические.

Инженерно-технические мероприятия включают в себя внедрение вибробезопасных машин, применение средств виброзащиты, снижающих вибрацию, воздействующую на работающих, на путях ее распространения; проектировочными решениями технологических процессов и производственных помещений, обеспечивающими гигиенические нормы вибрации на рабочих местах.

Организационные мероприятия включают в себя контроль за монтажом оборудования, своевременным и качественным проведением плановопредупредительного обслуживания и ремонта, выполнением правил технической эксплуатации машин и агрегатов.

Лечебно-профилактические мероприятия обеспечивают необходимый микроклиматический режим и комплекс физиотерапевтических процедур(водные ванны, массаж, гимнастика и ультрафиолетовые облучения).

Вибрацией называют механические ритмичные колебания упругих тел. Чаще всего под вибрацией понимают нежелательные колебания. Аритмичные колебания называют толчками.

Распространяется вибрация вследствие передачи энергии колебаний от колеблющихся частиц к соседним частицам. Эта энергия в любой момент пропорциональна квадрату скорости колебательного движения, поэтому по величине последней можно судить об интенсивности вибрации, т. е. о потоке вибрационной энергии. Поскольку скорости колебательного движения изменяются во времени от нуля до максимума, для их оценки используют не мгновенные максимальные значения, а среднеквадратичную величину за период колебания или измерения.

В отличие от звука вибрация воспринимается разными органами и частицами тела. Так, при низкочастотных (до 15 Гц) колебаниях поступательная вибрация воспринимается отолитовым, а вращательная - вестибулярным аппаратом внутреннего уха. При контакте с твердым вибрирующим телом вибрация воспринимается нервными окончаниями кожи.

Сила восприятия механических колебаний зависит от биомеханической реакции тела человека, представляющего собой в определенной мере механическую колебательную систему, обладающую собственным резонансом и резонансом отдельных органов, что и определяет строгую частотную зависимость многих биологических эффектов вибрации. Так, у человека в положении сидя резонанс тела, который обусловливается влиянием вибрации и проявляется неприятными субъективными ощущениями, наступает на частотах 4-6 Гц, у человека в положении стоя - на частотах 5-12 Гц.

Человек ощущает вибрацию частотой от долей герца до 800 Гц, вибрация большой частоты воспринимается подобно ультразвуковым колебаниям, вызывая ощущение тепла.

Человек ощущает колебательные скорости, отличающиеся в 10 000 раз. Поэтому по аналогии с шумом интенсивность вибрации часто оценивают как уровень колебательной скорости (виброскорости), определяя его в децибелах.

За пороговую колебательную скорость принята величина 5 х10"8 м/с, что отвечает пороговому звуковому давлению 2 х 1 0 ~ 5 Н/м2.

Для характеристики вибрации можно использовать и другие показатели, например виброускорение, вибросмещение. Это равнозначные единицы, которые используют для описания вибрации как физического процесса.

В большинстве случаев вибрация, создаваемая различными источниками, имеет сложный спектр частот. Отличается она неодинаковым распределением интенсивности по частотам и разным характером изменения общей вибрационной энергии во времени.

Так же, как и шум, вибрация разных частот и интенсивностей неодинаково воздействует на организм человека. По характеру воздействия выделяют общую и локальную вибрацию. Общая вибрация - это колебания больших поверхностей, передающиеся всему организму. Локальная вибрация наблюдается при колебаниях небольших тел (ручные инструменты и т. д.) Она обычно передается ограниченному участку тела человека и имеет значение для его производственной деятельности. В коммунальной гигиене мы имеем дело главным образом с общей вибрацией, возникающей во время движения автотранспорта, трамваев, троллейбусов, а также с колебанием пола, почвы и т. д.

По направлению воздействия на человека различают вертикальную и горизонтальную, переднезаднюю и боковую вибрацию, которую обозначают буквами Z, X, Y.

МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ПРОИЗВОДСТВЕННОЙ ВИБРАЦИИ

Увеличение скоростных и силовых параметров современных машин и механизмов приводит к возрастанию динамических нагрузок, а значит и их вибрационной активности. Контакт человека с вибрирующими объектами отрицательно сказывается на его здоровье и работоспособности: повышается утомляемость, снижается производительность и качество труда. Может развиться профессиональное заболевание – вибрационная болезнь, которая в последние годы во всех развитых странах занимает второе место после болезней от пыли.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИБРАЦИИ

Под вибрацией понимается движение точки или механической системы, при котором происходит поочередное возрастание и убывание обычно во времени значений какой – либо величины, его характеризующей (в соответствии с ГОСТ 24346–80).

Причинами возникновения вибрации являются: возвратно-поступательное движение механизмов; неуравновешенные вращающиеся массы; неоднородность материала вращающегося тела; деформация деталей от неравномерного нагрева.

Вибрацию, происходящую по синусоидальному закону, характеризуют: амплитуда виброперемещения A а – величина наибольшего отклонения колеблющейся точки от положения равновесия; амплитуда виброскорости V а – максимальное значение скорости колеблющейся точки; амплитуда виброускорения а а – максимальное значение ускорения колеблющейся точки; период Т и частота колебаний f =Т - 1 . Виброскорость и виброускорение связаны с виброперемещением и частотой колебаний соотношениями:

V = 2p × f × A и a = (2p × f ) 2 × A . (12.1)

В инженерных расчетах используют логарифмические уровни колебаний L оцениваемые по следующей формуле:

L = 20 lg(b × b 0 - 1), (12.2)

где b – оцениваемое значение величины (скорость, ускорение и т.п.);

b 0 – исходное значение величины (скорости, ускорения и т.п.).

Например, уровни виброскорости L V и виброускорения L a вычисляются как:

L V = 20 × lq (V × V o - 1) и L a = 20 × lq (a × a o - 1), (12.3)

где V и а – значения соответственно виброскорости и виброускорения;

V 0 = 5 × 10 - 8 м/с и а 0 = 3 × 10 - 4 м/с 2 – исходные (пороговые) значения виброскорости и виброускорения принятые согласно международным соглашениям.

Уровни колебаний (вибрации) измеряются в децибелах (дБ).

В общем случае вибрация зависит от времени: V = V(t ) и является периодической функцией при определенных условиях, которую можно представить в виде бесконечных гармонических колебаний, частоты которых этих составляющих кратны основной частоте колебаний (процесса):

f n = n × f 1 , (12.4)

где n = 1,2,3,..;

f 1 – основная частота колебаний.

Важнейшей характеристикой вибрации является ее спектр. Периодическим и почти периодическим колебаниям соответствует дискретный спектр, непериодическим – непрерывный спектр. В общем случае спектр имеет смешанный характер.

Интенсивность вибрационных воздействий на человека, зависит от их частоты. Поэтому весь диапазон частот колебаний принято разбивать на отрезки (полосы частот) и определять уровни вибрации для каждой полосы в отдельности. При оценке вибрационной безопасности в качестве стандартных частотных полос принимают октавные полосы, для которых отношение верхних граничных частот к нижним частотам равно 2. Каждую из октавных полос принято определяют среднегеометрическим значением f c ее граничных частот, по формулам:

f c = (f max × f min ) 0,5 = 2 0,5 f min @ 1,41 f min , f max = 2 f min . (12.5)

где f min – нижняя граничная частота;

f max – верхняя граничная частота, Гц.

При необходимости октавные полосы делят на третьоктавные, для которых