Расчет подошвы фундамента. Ширина фундамента: ленточный и столбчатый фундамент Монолитная железобетонная лента

3.1 Определение глубины заложения фундамента

Рисунок 1 – К определению глубины заложения фундамента

Здание имеет подвал глубиной 3 м, следовательно, в любом случае подошва фундамента будет ниже глубины промерзания. Определим минимальную глубину заложения исходя из нормативной глубины промерзания по формуле:

где kh – коэффициент, учитывающий влияние теплового режима здания на глубину промерзания грунта у фундаментов наружных стен, определяем по таблице 13 ;

dfn – нормативная глубина промерзания, определяемая по карте нормативных глубин промерзания, для города Быхова dfn= 1,05м

df=0,6∙1,05=0,63м

Назначаем глубину заложения фундамента в зависимости от п.1 и п.5 гл.4. Отметка чистого пола, согласно заданию, при DL=-0,30 м будет равна 62,80 м, отметка пола подвала будет в этом случае равна 62,8-3=59,8 м.

Отметка низа перекрытия над подвалом 62,50 м. Принимаем конструкцию фундамента из пяти блоков высотой 0,6м и подушки высотой 0,3 м. Таким образом, отметка подошвы фундамента составит 59,02 м.

d=62,5-59,2=3,3м

3.2 Устройство песчаной подушки

Так как суглинок мягкопластичный не может являться естественным основанием, то ставим фундаментную плиту на песчаную подушку мощностью 1м.

Зададимся характеристиками, которыми должен обладать грунт песчаной подушки: ρds=1,62 г/см3- требуемая плотность; Woпт=12%- оптимальная влажность для песка средней крупности. Определим физические характеристики грунта подушки.

Коэффициент пористости по формуле (3):

где ρs – плотность твердых частиц грунта, т/м3, для песчаной подушки принимаем ρs=2,67 т/м3

Степень влажности грунта подушки:

Таким образом, исходя из полученных физических характеристик, делаем вывод, что материалом песчаной подушки является песок средней крупности средней плотности, маловлажный.

Определим механические характеристики данного грунта по таблицам 4, 5: R0=500 кПа, Cn=1 кПа, φn=350, Еn=30 МПа

3.3 Определение размеров подошвы ленточного фундамента

Размеры подошвы фундамента в основном зависят от механических свойств грунтов оснований и характера нагрузок, передающихся фундаменту, от особенностей несущих конструкций, передающих нагрузку на фундамент. Размеры фундамента необходимо подобрать таким образом, чтобы выполнялось условие:

т.е. расчетные осадки не должны превышать допустимые.

Согласно выполнение этого условия реализуется при соблюдении следующего условия:

PCP≤R,Pmax≤1,2R , Pmin≥0 (10)

Размеры подошвы фундамента под кирпичную стену определим на 1 погонный метр его длины методом последовательного приближения.

Расчетное значение нагрузки Fv=120кН.

Рисунок 2 – Расчетная схема ленточного фундамента

Определим площадь подошвы ленточного фундамента по формуле:

(11)

Для ленточного фундамента ширина подушки определяется по формуле:

b=A/1м.п. (12)

b1=0,28м2/1м.п.=0,28м

Уточняем расчетное сопротивление по формуле:

R=
(13)

где gС1 и gС2 – коэффициенты условий работы, учитывающие особенности работы разных грунтов в основании фундаментов и принимаемые по таблице 16, .

k – коэффициент, принимаемый: k=1,1 – т.к. прочностные характеристики грунта приняты по нормативным таблицам;

kZ – коэффициент принимаемый kZ=1 при b

Фундаментом называют подземную часть здания, предназначенную для передачи нагрузки от здания на залегающие на некоторой глубину грунты основания.Подошвой фундамента называется его нижняя поверхность, соприкасающаяся с основанием; верхняя плоскость фундамента, на которую опираются наземные конструкции, называется обрезом . За ширину фундамента принимается минимальный размер подошвы b , а за длину – наибольший ее размер l . Высота фундамента hf есть расстояние от подошвы до обреза, а расстояние от поверхности планировки до подошвы называется глубиной заложения d .

К фундаментам мелкого заложения относятся фундаменты, передающие нагрузку на грунты основания преимущественно через подошву. Они применяются в различных областях и инженерно-геологических условиях как в сборном, так и в монолитном вариантах (Таблица 6.2).Таблица 6.2

Области применения фундаментов мелкого заложения

При центральной нагрузке форму отдельных фундаментов в плане рекомендуется принимать квадратной, а при внецентренной нагрузке – прямоугольной (с отношением сторон 0,6…0,85).

Независимо от грунтовых условий (кроме скальных грунтов) под фундаментами устраивают подготовку толщиной 100мм: под монолитными – бетонную, из бетона класса В3,5; а под сборными – из песка средней крупности. При возведении фундаментов на скальных грунтах по грунтовому основанию устраивают выравнивающий слой бетона класса В3,5.

Расчет фундамента мелкого заложения начинают с предварительного выбора его конструкции и основных размеров, к которым относятся глубина заложения фундамента, размеры и форма подошвы. Затем для принятых размеров фундамента производят расчеты основания по предельным состояниям.

Определение глубины заложения фундамента. Очевидно, что чем меньше глубина заложения фундамента, тем меньше объем затрачиваемого материала и ниже стоимость его возведения, поэтому естественно стремление принять глубину заложения как можно меньшей.

Рис. Схемы напластований грунтов с вариантами устройства фундаментов: 1- прочный грунт; 2-более прочный грунт; 3-слабый грунт; 4-песчанная подушка; 5-зона закрепления

Минимальная глубина заложения фундаментов принимается не менее 0,5 м от спланированной поверхности территории; глубина заложения фундамента в несущий слой грунта должна быть не менее 10…15 см.

Глубина сезонного промерзания грунтов. df=khdfn, где kh – коэффициент, учитывающий влияние теплового

режима сооружения, dfn - нормативная глубина сезонного промерзания грунтов, м.

Определение формы и размеров подошвы фундаментов. Форма подошвы фундамента во многом определяется конфигурацией. При расчетах фундаментов мелкого заложения по второму предельному состоянию (по деформациям) площадь подошвы предварительно может быть определена из условия pП≤R, где pП – среднее давление по подошве фундамента, R – расчетное сопротивление грунта основания.

Данное условие должно выполняться с недогрузом: для монолитных фундаментов – £5%, для сборных – £10%.

Выполнение условия осложняется тем, что обе части неравенства содержат искомые геометрические размеры фундамента, в результате чего расчет приходится вести методом последовательных приближений за несколько итераций.

Предлагается такая последовательность операций при подборе размеров фундамента:

Þ задаются формой подошвы фундамента:

Если фундамент ленточный, то рассматривается участок ленты длиной 1м и шириной b .

Если фундамент прямоугольный, то задаются соотношением сторон прямоугольника в виде h=b/l= 0,6…0,85. Тогда A=bl=b2/h , где A – площадь прямоугольника, l – длина, b – ширина прямоугольника. Отсюда. Частным случаем прямоугольника является квадрат, в этом случае

Þ вычисляют предварительную площадь фундамента по формуле:

где NII – сумма нагрузок для расчетов по второй группе предельных состояний, кПа. В случае ленточных фундаментов это погонная нагрузка, в случае прямоугольных и квадратных – сосредоточенная нагрузка;

R0 – табличное значение расчетного сопротивления грунта, где располагается подошва фундамента, кПа;

g¢II – осредненное расчетное значение удельного веса грунтов, залегающих выше подошвы фундамента, кН/м3;

d1 – глубина заложения фундаментов бесподвальных сооружений или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала:

где hs – толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

hcf – толщина конструкции пола подвала, м;

gcf – расчетное значение удельного веса конструкции пола подвала, кН/м3;

Þ по известной форме фундамента вычисляют ширину фундамента:

в случае ленточного фундамента b=A¢ ;

в случае квадратного фундамента;

в случае прямоугольного и l=h/b .

После определения требуемых размеров фундамента необходимо в пояснительной записке запроектировать тело фундамента в виде эскиза с проставлением размеров. При этом размерами фундамента можно в небольших пределах варьировать из конструктивных соображений, изложенных в п.6.2.1. Только после уточнения всех размеров фундамента можно переходить к следующему пункту.

Þ по формуле (7) СНиП 2.02.01-83 вычисляют расчетное сопротивление грунта основания R :

Рисунок 6.6: К определению глубины заложения фундаментов

а – при d1 d ; в- для плитных фундаментов

1- наружная стена; 2 - перекрытие; 3 - внутренняя стена; 4 - пол подвала; 5 - фундамент

Центрально нагруженный фундамент . Центрально нагруженным считают фундамент, у которого равнодействующая внешних нагрузок проходит через центр площади его подошвы. Реактивное давление грунта по подошве жесткого центрально нагруженного фундамента принимается равномерно распределеннымpII=(NoII+GfII+GgII)/A, где NoII - расчетная вертикальная нагрузка на уровне обреза фундамента; GfIIи GgII - расчетные значения веса фундамента и грунта на его уступах; А - площадь подошвы фундамента. В предварительных расчетах вес грунта и фундамента в объеме параллелепипеда АВСD, в основании которого лежит неизвестная площадь подошвы А, определяется приближенно из выражения GfII+GgII=γmAd где γm - среднее значение удельного веса фундамента и грунта на его уступах, d – глубина заложения фундамента, м.

А=NoII/(R-γmd). Рассчитав площадь подошвы фундамента, находят его ширину b. Ширину ленточного фундамента, для которого нагрузки определяют на 1 м длины. После вычисления значения b принимают размеры фундамента с учетом модульности и унификации конструкций и проверяют давление. Найденная величина рII должна быть по возможности близка к значению расчетного R.

Внецентренно нагруженный фундамент . Внецентренно нагруженным считают фундамент, у которого равнодействующая внешних нагрузок не проходит через центр тяжести площади его подошвы. Такое нагружение является следствием передачи на него момента или горизонтальной составляющей нагрузки. При расчете давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону, а его краевые значения при действии момента сил относительно одной из главных осей определяют, как для случая внецентренного сжатия:

, (6.9)

где Mx, My – изгибающие моменты, относительно главных осей подошвы фундамента, кНм;

Wx, Wy – моменты сопротивления сечения подошвы фундамента относительно соответствующей оси, м3.

Эпюра давлений под подошвой фундамента, полученная по данной формуле должна быть однозначной, т.е. по всей ширине сечения напряжения должны быть сжимающими. Это вызвано тем, что растягивающие напряжения, в случае их возникновения, могут привести к отрыву подошвы фундамента от основания и будет необходим специальный расчет, который не входит в предусмотренный объем курсового проекта.

Внецентренно нагруженным считают фундамент, у которого равнодействующая внешних нагрузок не проходит через центр тяжести площади его подошвы. При расчете давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону, а его краевые значения при действии момента сил относительно одной из главных осей.рmax=(NII/A)(1±6e/b), где NII - суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его уступах; А - площадь подошвы фундамента; е - эксцентриситет равнодействующей относительно центра тяжести подошвы; b - размер подошвы фундамента в плоскости действия момента.

Поскольку при внецентренном нагружении относительно одной из центральных осей максимальное давление на основание действует только под краем фундамента, при подборе размеров подошвы; фундамента его допускается принимать на 20% больше расчетного и сопротивления грунта, т.е. рmax≤1,2R Одновременно среднее давление по подошве фундамента, определяемое как рII=NII/A должна удовлетворять условию pII≤R.

В тех случаях, когда точка приложения равнодействующей внешних сил смещена относительно обеих осей инерции прямоугольной подошвы фундамента, давление под ее угловыми точками находят по формуле.рсmax=(NII/A)(1±6ex/l±6ey/b).

Поскольку в этом случае максимальное давление действует только в одной точке подошвы фундамента, допускается, чтобы его значение, удовлетворяло условию рсmax≤1,5R. Проверка давления на подстилающий слой слабого грунта . При наличии и в пределах сжимаемой толщи основания слабых грунтов или грунтов с расчетным сопротивлением меньшим, чем давление на несущий слой, необходимо проверить давление на них, чтобы уточнить возможность применения при расчете основания теории линейной деформируемости грунтов. Последнее требует, чтобы полное давление на кровлю подстилающего слоя не превышало его расчетного сопротивления, т.е. σzp+ σzg≤Rz

Где σzp и σzg - вертикальные напряжения в грунте на глубине z от подошвы фундамента (соответственно дополнительное от нагрузки фундамент и от собственного веса грунта); Rz - расчетное сопротивление грунта на глубине кровли слабого слоя, величину Rz определяют как для условного фундамента шириной bz, и глубиной заложения dz. Коэффициенты условий работы γС1, γС2 и надежности k, а также коэффициенты Мq, Mc находят применительно к слою слабого грунта. Ширину условного фундамента назначают с учетом рассеивания напряжений в пределах слоя толщиной z. Если принять, что давление действует по подошве условного фундамента АВ, то площадь его подошвы должна составлять Az=NoII/σzp, Зная Аz найдем ширину условного прямоугольного фундамента bz=(√Az+a2)-a, где а=(1-b)/2 (1 и b длина на и ширина подошвы проектируемого фундамента. Для ленточных фундаментов bz=Аz/1.

Расчет осадки.

Расчет оснований по деформациям производится исходя из условия (6.1):

S £Su ,

где S – совместная конечная деформация (осадка) основания и сооружения, определяемая расчетом по указаниям приложения 2 СНиП 2.02.01-83, методика которого излагается ниже.

Su – предельное значение совместной деформации основания и сооружения, устанавливаемое по указаниям п.6.1.

Расчетная схема основания применяется в виде линейно-деформируемого полупространства с условным ограничением глубины сжимаемой толщи Нс . Схема распределения вертикальных напряжений в линейно-деформированном полупространстве приведена на рис.6.9.

Для расчета S используется метод послойного суммирования осадок, который допустимо применять в случаях, когда давление под подошвой фундамента p не превышает расчетное сопротивление грунта основания R .

Последовательность расчета осадок по методу послойного суммирования следующая:

а) на фоне геологического разреза (выполненного в масштабе) показать контуры проектируемого фундамента;

б) слева от оси фундамента построить эпюру вертикальных напряжений от собственного веса грунта (эпюру szg ), используя формулу:

где – удельный вес грунта, расположенного выше подошвы фундамента;

dn – глубина заложения фундамента;

gi, hi – соответственно удельный вес и толщина i -го слоя грунта;

Удельный вес грунтов, залегающих ниже уровня подземных вод, но выше водоупора, должен приниматься с учетом взвешивающего действия воды:

Если в толще основания находится водонепроницаемый слой – глины твердые, полутвердые, тугопластичные, суглинки твердые и скальные нетрещиноватые породы, то на его кровлю передается давление от вышележащих грунта и подземных вод. Тогда на кровле водоупора возникает скачок напряжений на величину hwgw .

в) грунтовую толщу от подошвы фундамента вниз разбить на элементарные слои, мощность которых удобно принимать равной 0,2b или 0,4b . При разбивке не надо обращать внимание на границы слоев различных грунтов и на уровень грунтовых вод;

г) справа от оси от уровня подошвы фундамента построить эпюру дополнительных вертикальных напряжений (эпюру szp ). Дополнительные вертикальные напряжения на глубине z от подошвы фундамента, определяются по формуле:

szp=ap0 , (6.19)

где a – коэффициент, принимаемый в зависимости от формы подошвы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины, равной x=2z/b ;

p0=p-szg,0 – дополнительное вертикальное давление на основание (для фундаментов шириной b ³10м принимается p0=p );

д) определить нижнюю границу сжимаемой толщи (НГСТ), которая находится на уровне, где выполняется условие szp=0,2szg . НГСТ удобно определять графическим способом, для чего справа от оси достаточно построить эпюру 0,2szg в том же масштабе, в котором построена эпюра szp . Точка пересечения эпюр szp и 0,2szg определит НГСТ;

где b – безразмерный коэффициент, равный 0,8;

szp,i – среднее значение дополнительного вертикального нормального напряжения в i- том слое грунта, равное полусумме указанных напряжений на верхней zi-1 и нижней zi границ слоя по вертикали, проходящей через центр подошвы фундамента;

hi, Ei – соответственно толщина и модуль деформации i- того слоя грунта; если в i- тый слой входит два геологических слоя, то Ei принимать по тому слою, мощность которого в i -том слое больше;

n – число слоев, на которое разбита сжимаемая толща основания.
Рисунок 6.9: Схема распределения вертикальных напряжений в линейно-деформируемом полупространстве:

DL – отметка планировки; NL – отметка поверхности природного рельефа; FL - отметка подошвы фундамента; WL – уровень подземных вод; B.C – нижняя граница сжимаемой толщи; d и dn – глубина заложения фундамента соответственно от уровня планировки и поверхности природного рельефа; b – ширина фундамента; p – среднее давление под подошвой фундамента; p0 – дополнительное давление на основание; szg и szg,0 – вертикальное напряжение от собственного веса грунта на глубине z от подошвы фундамента и на уровне подошвы; szp и szp,0 – дополнительное вертикальное напряжение от внешней нагрузки на глубине z от подошвы фундамента и на уровне подошвы.

Дом Определение предварительных размеров подошвы фундаментов мелкого заложения просмотров - 391

Выбор типов оснований и фундаментов на базе сравнения вариантов

По гидрогеологическим условиям в период строительства и эксплуатации сооружения.

Грунтовые воды не оказывают непосредственного влияния на глубину заложения фундаментов. Рекомендуется закладывать фундаменты выше уровня грунтовых вод для исключения крайне важности применения водоотлива или водопонижения. При заложении фундаментов ниже уровня грунтовых вод предусматривают соответствующую гидроизоляцию и методы производства работ, сохраняющие структуру грунта. При проектировании оснований учитывают возможность изменения гидрогеологических условий площадки в процессе строительства и эксплуатации сооружения.

Итак, после рассмотрения отдельно каждого условия, определяющего глубину заложения фундамента͵ в пояснительной записке указывают абсолютную отметку подошвы или отмечают, что ограничений нет.

Окончательно принимают минимальное значение величины абсолютной отметки подошвы фундаментов и вычисляют глубину заложения:

Отметку подошвы ростверка назначают по этим же условиям (за исключением п. 3.3.3).

По конструктивным условиям высота ростверка равна (h0 + 0,25) м, но не менее 30 см, где h0 – высота заделки в него сваи, которую принимают не менее 5 см.

В заключении раздела крайне важно проанализировать параметры будущего котлована. В случае если абсолютные отметки подошв всœех фундаментов сооружения отличаются друг от друга незначительно, то возможно расположить всœе фундаменты с единой абсолютной отметкой. Это сократит затраты на земляные работы.

В курсовом проекте глубину заложения определяют для каждого заданного для расчета фундамента.

Выбор типов оснований и фундаментов производят на основе совместного анализа исходных данных по инженерно-геологическим и гидрогеологическим условиям площадки строительства и надфундаментных конструкций.

Грунты в большинстве случаев используют в естественном состоянии. Но если верхняя относительно небольшая толща сложена слабыми грунтами, не способными в естественном состоянии воспринимать нагрузки от фундаментов, то предусматривают специальные мероприятия (уплотнение, закрепление или замена другими грунтами, обладающими необходимыми свойствами). В случае если толща слабых грунтов велика, то мероприятия по их искусственному улучшению или их замена могут отказаться слишком дорогостоящими. Экономически более целœесообразным может оказаться метод фундирования, при котором нагрузку передают на плотные слои, залегающие на значительной глубинœе под толщей слабых грунтов. Для этой цели устраивают свайные фундаменты (к примеру, сваи, сваи-оболочки, сваи- столбы).

Студенту крайне важно принять решение об использовании одного из двух возможных типов основания – естественного или искусственно улучшенного, а также рассмотреть 2 варианта фундаментов (мелкого и глубокого заложения).

К фундаментам мелкого заложения относятся отдельные (столбчатые), ленточные и в виде сплошной желœезобетонной плиты.

Типы свай различают по материалу, форме поперечного и продольного сечений, способу изготовления и погружения в грунт. При этом проходка сваями глинистых грунтов твердой и полутвердой консистенции допускается в исключительных случаях. Сваи нельзя применять, когда в толще имеются валуны и другие препятствия. В этих случаях делают фундаменты, выполняемые способами стена в грунте или опускной колодец.

При выборе вариантов фундаментов рассматривают только варианты целœесообразные и конкурирующие между собой.

Под одним зданием бывают разные типы оснований или фундаментов. К примеру, тяжелая часть здания может опираться на свайный фундамент, а более легкая на фундаменты мелкого заложения (рис. 5).

Рис. 5. Тип оснований и фундаментов: а – разные по нагрузкам фундаменты при одинаковом грунтовом основании; б – одинаковые по нагрузкам фундаменты при разных грунтовых основаниях.

Размеры подошвы определяют методом последовательного приближения.

1. Вычисляют площадь подошвы А в первом приближении

2. Выбирают форму подошвы. Известно, что самая оптимальная с точки зрения ведущих осадок – круглая, но она трудоемка в использовании. По этой причине подошву фундамента принимают квадратной, и только наличие большого по величинœе момента вынуждает принимать ее прямоугольной ().

3. Исходя из А1, вычисляют ширину и длину фундамента при принятом отношении. К примеру, для квадратной подошвы: , для прямоугольной: ; ; . Размеры принимают кратными 10 см.

4. Определяют расчетное сопротивление грунта основания (приложения Б10 и Б11)

5. Вычисляют площадь подошвы во втором приближении

6. Уточняют размеры подошвы и. На этом приближении можно остановиться, приняв, .

7. Конструируют фундамент, назначая определœенное количество и размеры ступеней (рис. 6), и вычисляют среднее давление под подошвой фундамента

8. Проверяют выполнение следующих условий:

а) среднее давление под подошвой фундамента не должно превышать расчетного сопротивления грунта основания, ᴛ.ᴇ. ;

б) при действии момента в одном направлении (рис.6,а) давление под наиболее и наименее нагруженной гранью фундамента должно быть соответственно:

в) при действии момента в двух направлениях давление в угловой максимально нагруженной точке (рис. 6, б) не должно превышать 1,5R, ᴛ.ᴇ. ;

В случае если вышеприведенные условия не выполняются, то крайне важно предпринять следующее:

1) изменить соотношение размеров подошвы, ᴛ.ᴇ. придать подошве удлинœение в плоскости действия наибольшего момента͵ но не более, чем;

2) увеличить площадь подошвы на 20 % и более;

3) сместить подошву фундамента в направлении действия момента относительно неподвижной колонны, тогда величина эксцентриситета равна расстоянию от центра подошвы до точки пересечения оси колонны с подошвой фундамента (рис. 7). При этом площадь подошвы остается без изменений. Значения и для проверки вышеприведенных условий определяют по формуле:

При выполнении всœех условий предварительный расчет размеров подошвы фундамента мелкого заложения считается завершенным.

Ширину подошвы ленточного фундамента под стену определяют аналогично, исходя из расчетных условий, приходящихся на 1 м длинны фундамента (при l = 1 м).

Сборные ленточные фундаменты проектируют прерывистыми.

При слабых, просадочных и набухающих грунтах, а также при на­личии карстовых явлений, в сейсмических районах и на подрабатываемых территориях для снижения неравномерности деформаций здания устраивают монолитные желœезобетонные перекрестные ленты или плитные фундаменты под всœем сооружением. Основными конструктивными типами плит являются: безбалочная плита с опиранием колонн на сборные стаканы (рис. 8, а), безбалочная плита с монолитными стаканами (рис. 8, б), ребристая плита͵ соединяемая с колоннами с помощью мо­нолитных стаканов или выпусков арматуры (рис. 8, в), плита коробча­того сечения (рис. 8, г).

Размеры плиты в плане равны наружным габаритам каркаса (на­ружные поверхности стен или колонн), увеличенным на две толщины стенки стакана или отступая на 10…20 см от несущих стен. Толщина плиты определяется расчетом ее как желœезобетонного элемента͵ а в курсовом проекте принимают 40…60 см.

Столбчатый фундамент

Основание самого обычного монолитного ленточного фундамента представляет собой железобетонную платформу, которая нужна для того, чтобы нагрузка и от самого фундамента и от той постройки, которая на нём стоит, распределялась на грунт равномерно. Как правило, ширина подошвы ленточного фундамента или основания фундамента должна быть в два раза больше ширины самого фундамента.

Строительство подошвы фундамента происходит из расчёта данных, которые характеризуют почву.

Высота такой подошвы, как правило, делается не больше тридцати сантиметров, а ширина подошвы фундамента делается на уровне шестидесяти сантиметров. В большинстве своём такие фундаменты усиливаются несколькими рядами арматуры, один прут которой имеет диаметр в двенадцать миллиметров.

Иногда бывает так, что ширина подошвы превосходит ширину фундамента в несколько раз. Это связано с тем, что некоторые типы грунтов просто не могут держать большие массы, которые возникают при строительстве достаточно крупных объектов.

Этапы строительства

Перед тем, как начать строительство нужно в котловане разметить точное расположение фундамента, то есть наметить углы и пересечения стен и так далее. Если перед началом работ, на этом участке работали геодезисты, то разметка не представляет сложности. Останется просто натянуть шнур между вешками (специальными флажками). Вешки, как правило, устанавливаются ещё до того момента, как начали копать котлован.

Также в этом деле используется отвес. Он помогает установить новые флажки. Для удобства в качестве таких флажком можно использовать куски арматуры – их потом при заливке фундамента не нужно будет вынимать, а заливать вместе с ними. Флажки нужно устанавливать на таком расстоянии, которое точно бы соответствовало длине стены, которая будет стоять на этом участке фундамента.

После того, как два флажка установлены нужно установить ещё два, то есть в оставшихся двух углах. Сделать это можно способом диагонали. Он заключается в том, что при помощи простых математических расчётов точно высчитывается диагональ постройки на основе знаний о длине и ширине постройки.

Зная длину диагонали и размеры фундамента можно легко и самое главное точно определить положение двух других флажков. Делается это так:

Ширина подошвы ленточного фундамента часто больше ширины самого фундамента

  • Два человека держат начало рулетки в уже отмеченных точках;
  • Ещё один человек перекрещивает два свободных конца рулеток на той отметке, которая показывает длину стены;
  • В точке пересечения в землю забивается ещё один флажок.

После того, как разметка произведена, её нужно полностью проверить, чтобы исключить возможные ошибки. Проверяется это просто. Всё, что нужно сделать, это просто замерить длины всех сторон, и если они соответствуют плану строительства, значит разметка произведена правильно.

Опалубка под фундамент

После разметки и её проверки в случае успеха, для будущего фундамента следует подготовить опалубку. Для неё можно использовать обычные доски, которые имеют порядка 30 сантиметров в ширину и не менее трёх по толщине. Связано это с тем, что при заливке бетона он будет оказывать на опалубку очень большое боковое давление, и тонкие доски просто могут прогнуться, что приведёт к искривлению фундамента.

Чтобы скрепить доски между собой, в землю необходимо вбить П-образные металлические прутья, при этом горизонтальная планка такого прута должна быть не больше, чем ширина фундамента. Такие элементы необходимо ставить друг от друга на расстоянии, не превышающем 70 сантиметров.

Сами доски нужно располагать так, чтобы стена оказалась точно по центру фундамента.

Работа начинается с того, что между собой скрепляются две доски указанного размера под углом в девяноста градусов. Такое строение будет служить наружным углом. Дальше этот угол устанавливаем на неком расстоянии от шнура.

После этого при помощи П-образных скоб устанавливаем внутренние стены опалубки, которые должны быть установлены точно параллельно внешним стенам. Так происходит постепенное продвижение от одного угла опалубки ко второму и третьему. Все скобы, которые фиксирую опалубку, на прямых участках разрешается ставить на расстоянии примерно в 110-120 сантиметров.

На стыке доски должны быть сбиты между собой гвоздями, которые стоит вбивать под углом, чтобы одним гвоздём прибить две доски. По бокам от стыка необходимо установить по одной фиксирующей скобе.

Если доски имею немного кривые торцы, то чтобы не получилась между ними щель, наверх, с наружной стороны, прибивают ещё одну доску, которая закрывает эту щель. Если же какая-нибудь доска оказалась немного длиннее, чем все остальные, то её можно не обрезать, а просто прибить поверх второй доски.

Обратная засыпка

Ширина фундамента высчитывается в зависимости от нагрузки здания и несущей способности грунтов

После полной установки опалубки, некоторые места следует укрепить. Сделать это можно при помощи обратной засыпки. Присыпать землёй нужно те места, где есть потенциальная слабость, например, место стыков досок опалубки, или место, где нет возможности вбить фиксатор и так далее. Такие места нужно присыпать землёй до самого верха досок. Кроме того присыпать можно и весь фундамент по периметру, но меньшим количеством земли. Это предотвратит опалубку от поднимания и выталкивая из своего положения при большой влажности земли, например, во время дождя.

Установка уровня фундамента

Установить уровень кромки фундамента можно при помощи теодолита. Есть два основных правила пользования этим инструментом:

  1. Она должна иметь строго горизонтальное расположение;
  2. Должна размещаться на точно установленной глубине.

Чтобы потом не перемерять, отметки уровней можно фиксировать по средствам мелких гвоздей. Забивать гвозди стоит только на половину их длины с шагом примерно в 0,5-1 метр. Гвозди забиваются с внутренней стороны всех досок опалубки. Позже, когда в опалубку начнёт заливаться бетон, то такие гвозди будут служить мерной линией, по которой нужно ориентироваться, чтобы в одном месте фундамент не был залит выше, а в другом ниже.

Заливка бетоном

Траншея под ленточный фундамент

Бетонирование котлована начинается с самых труднодоступных мест. Если получается так, что к некоторым местам вообще нет возможности подступиться, то их заливка происходит так:

  • Сначала начинаем заливать то место, которое расположено рядом с труднодоступным;
  • Лопатой подгребаем в труднодоступное место бетон до тех пор, пока он не достигнет отмеченного гвоздями уровня.

Армирование фундамента

После завершения заливки бетона можно приступать к армированию бетона. Производить укрепление фундамента лучше арматурой с диаметральным сечением в 12-12,5 миллиметров. Для этого прутья арматуры нужно разложить на жидком бетоне, на расстоянии примерно в пятнадцать-двадцать сантиметров от каждой стены опалубки. Прутья нужно просовывать под П-образные фиксаторы.

После того, как прутья уложены их следует утопить в бетон. Сделать это можно при помощи штыковых лопат. Производить утапливание нужно на глубину примерно в двадцать сантиметров, то есть на две трети длины штыка лопаты.

Когда прутья полностью погружены в бетон, то для того, чтобы избежать попадания туда воздуха, нужно лопатой сверху сделать трассировку, то есть многократно засовывать в бетон лопату и высовывать, так, чтобы штык лопаты был расположен перпендикулярно пруту арматуры.

Затирка фундамента

Теперь, когда арматура уложена, нужно немного приподнять П-образные фиксированные элементы. Поднимать их стоит не полностью, а на высоту примерно в 5-10 сантиметров. Нужно это для того, чтобы выполнить затирку кромки бетонной поверхности с целью её сглаживания. В свою очередь сглаживание нужно для того, чтобы облегчить последующие работы по возведению цоколя или стен, а также для того, чтобы упростить процесс удаления грязи с фундамента.

Вырезание шпоночной канавки

Такая канавка нужна для обеспечения надёжного соединения между фундаментом и цоколем или стеной постройки. Производится выдавливание вдоль всей центральной линии верхней фундаментной кромки. Стандартов по размеру канавки нет, но обычно её делают достаточно широкой. Например, как один из вариантов размеров такой канавки, могут быть размеры:

Вообще такие показатели могут лежать в диапазоне от 2,5 и до 5 сантиметров, и от 6 до 10 сантиметров соответственно.

Производить вдавливание лучше всего длинным деревянным бруском с прямоугольным сечением, и, как правило, ширина канавки определяется шириной бруса.

Производить устройство канавки лучше всего после того, как бетон уже немного застыл. Этот факт позволит сохранить сделанной канавке свою прямоугольную форму и не заплыть. Однако, если бетон будет уже слишком твёрдым, то при вдавливании бруса и последующего его удаления, стенки шпоночной канавки могут рассыпаться.

Канавки следует располагать только на прямых участках. На углах их делать не стоит, мало того, канавки не должны доходить до углов порядка 50-80 сантиметров.

Уборка опалубки

После того, как бетон фундамента набрал порядка 80 процентов своей прочности, что достигается через неделю в жаркую погоду, то можно убирать опалубку. Прежде, чем убирать доски сначала нужно провести кое-какие работы. Например, по отрисовыванию всех углов. Делается это следующим образом:

  • Сначала берём линейку и на каждой внешней доске опалубки на углу отмечаем расстояние в десять-пятнадцать сантиметров;
  • Дальше, рисуя прямо по фундаменту, ведём от точек линии параллельно стенам;
  • На месте пересечения линий ставим точку.

В результате такой несложной работы получается, что мы нарисовали квадрат, один угол которого является внешним углом фундамента.

Нужна такая работа для того, что потом точно знать, где есть внешний угол фундамента, так как часто бывает, что он в процессе строительства скалывается, и становится непонятно в каком месте фундамента выводить угол стены.

Столбчатый фундамент

Столбчатый фундамент применяется, когда нужно построить здание, которое будет иметь относительно небольшой вес, например, таким зданием может быть каркасный дом.

Конструктивно такой фундамент состоит из обычных столбов и плит перекрытия. Столбы могут выполняться из различных материалов:

  • Кирпича;
  • Камня;
  • Дерева.

Можно использовать и другие материалы.

Ширина одного столба зависит главным образом от несущей способности грунта, на котором он установлен, и от массы всего здания. Рассчитать это очень просто.

Первым делом, необходимо узнать, на каком типе земли планируется строительство. Дальше по справочным данным, можно найти какой несущей способностью обладает этот тип. Например, мы узнали, что на грунт можно оказывать давление не большее 2,5 килограмм силы на сантиметр квадратный площади грунта.

Тогда дальше измеряем массу планируемого здания. Сделать это можно также по специальным справочным данным, исходя из особенностей каждого строительного материла. Например, если известно, что строительство будет происходить пеноблоками, то не трудно подсчитать, сколько штук таких блоков нужно и сколько они все будут весить. Точно так же узнаём массу перекрытия и крыши.

Массу отделки можно не учитывать, так же, как и людей внутри здания. Этот вес уже учтён, так как не было вычета всех ниш, то есть окон и дверей.

После того, как были произведены все расчёты массы, и она стала известна, нужно произвести расчёт площади, на которой вся эта масса будет стоять. Делают это так: сначала вычисляют количество столбов, потом площадь соприкосновения с грунтом каждого столба, то есть ширину столба умножают на длину столба. После этого можно вычислить суммарную площадь опоры, как количество столбов, умноженное на площадь опоры одного столба.

После того, как этот расчёт произведён, то нужно узнать с какой силой будет давить дом на один сантиметр квадратный площади опоры. Для этого нужно весь вес разделить на всю площадь. Получим давление на один сантиметр квадратный. Например, вся масса получилась 100000 килограмм, а вся площадь равна 50000 квадратным сантиметрам, соответственно на один квадратный сантиметр будет оказываться давление в 2 килограмма силы.

Застройщика всегда волнует, какой ширины должен быть фундамент ленточной конструкции. Чем больше ширина фундамента, тем больше надо вложить в его возведение трудозатрат и материалов. Любое излишество в расходовании строительных материалов увеличивает затраты на строительство объекта. Чтобы этого не происходило, нужно точно рассчитать ширину и высоту ленточного фундамента. Расчёт основания здания определяет глубину заложения, высоту стенок и ширину фундамента. Также необходимо определить количество арматуры и её диаметр.

Почему выбирают ленточный фундамент

По сравнению с другими конструкциями фундаментных оснований ленточная опора позволяет наиболее равномерно передать нагрузку от здания на грунт, поэтому, если результаты исследования прочности грунтового основания позволяют, выбирают ленточный фундамент.

Делать ленточный фундамент нужно по всему периметру дома и под внутренними несущими стенами. Если внутри дома устанавливают тяжёлое технологическое оборудование (котёл), то под него тоже подводят фундаментную ленту.

Виды ленточного фундамента

Среди оснований разной конструкции, застройщик для своего дома зачастую выбирает ленточный фундамент. Ленточное основание строения в основном бывает двух видов:

  • ленточный фундамент из сборного железобетона;
  • монолитная железобетонная лента.

Сборный железобетон

При установке железобетонных блоков в проектное положение не нужно устраивать опалубку. Технология изготовления блоков включает в себя вибрирование и пропаривание бетона, что гарантирует их прочность.

При возведении ленточного фундамента из сборного железобетона на слабых грунтах блоки опирают на бетонные подушки (широкие плиты). Подушки увеличивают площадь опоры основания дома, тем самым снижают давление на почву.

Фундаментные блоки монолитного железобетона имеют буквенную маркировку – ФБС. Основные габариты ФБС указаны в таблице:


Кроме того, промышленность выпускает блоки ФБП. Блоки представляют собой облегчённый вариант ФБС аналогичной высоты и ширины с квадратными пустотами. Длина ФБП 238 см. Блоки применяют для опирания внутренних несущих ограждений и стен подвала.

Недостатки и преимущества блочного фундамента

Расчёт фундамента из сборного железобетона не может быть экономически точным. Причиной этому является стандартизация размеров железобетонных блоков. Например, если расчёт определил толщину ленточного фундамента 550 мм, а высоту стенки 500 мм, то размер применяемых блоков будет соответственно 600 мм и 580 мм.

Наряду с этим, блочное основание обладает рядом преимуществ перед монолитной лентой:

  • значительное сокращение объёмов мокрых процессов;
  • отсутствие затрат на опалубочные работы, армирование, приготовление и заливку бетонного раствора;
  • всесезонность монтажных работ;
  • возведение основания дома производится в короткие сроки и не зависит от времени застывания бетона.

Монолитная железобетонная лента

Расчёт монолитной ленты должен гарантировать возведение прочного и надёжного основания здания.

Если глубина заложения ленты зависит от уровня грунтовых вод, несущей способности грунтового основания, толщины промерзания почвы, то ширина ленточного фундамента определяется исходя из общей нагрузки от строения и толщины наружных стен.

Делать ленточный фундамент нужно такой ширины, чтобы общая площадь подошвы основания здания соответствовала сопротивлению грунтового основания.

Расчёт площади подошвы ленточного фундамента

Расчёт площади основания здания должен быть таким, чтобы под действием суммарной нагрузки дом не продавливал землю и не выталкивался наверх промёрзшей вспученной почвой. В нормативной документации можно найти формулу, как рассчитать площадь основания дома.

S>kF/k(c)R, где

S – площадь подошвы фундамента;

k – коэффициент надёжности равный 1,2, то есть закладывается запас площади в 20%;

k(c) – коэффициент состава грунта (пластичная глина – 1, песок — 1,4 и т.д.);

R – расчётное сопротивление грунта (берётся из таблицы СНиП).

Все элементы формулы имеют справочный характер, кроме суммарной нагрузки F. Суммарную нагрузку рассчитывают, используя справочные таблицы нормативной документации. Для этого применяют показатели среднего удельного веса конструкций кровли, стен и перекрытий.

Также в расчёт принимают такие данные, как снеговая нагрузка. В средней полосе России это составляет – 100 кг/м 2 , на севере страны – 190 кг/м 2 , на юге – 50 кг/м 2 .

В общей сумме учитывается вес самого фундамента и полезная нагрузка (техническое оборудование, заполнение помещений мебелью и прочее).

Видео «Самостоятельный расчёт опорной площади фундамента»:

Пример самостоятельного расчёта ширины ленточного фундамента

Исходные данные:

  • размер дома в плане – 10 м х 10 м. Площадь застройки – 100 м 2 ;
  • внутри дома посередине расположена несущая стена;
  • стены кирпичные, толщиной в 1 кирпич – 250 мм и высотой 2,7 м. Удельный вес кирпичной кладки – 1600 кг/м 3 ;
  • кровля из шифера – 40 кг/м 2 ;
  • перекрытие из железобетонных плит – 500 кг/м 2 ;
  • глубина промерзания почвы – 700 мм;
  • уровень грунтовых вод – 2,2 м;
  • грунтовое основание – сухой суглинок средней плотности с расчётным сопротивлением 2 кг/см 2 ;

Все величины нормативных нагрузок взяты на основе справочных данных. Величина снеговой нагрузки определена из соответствующего раздела СНиП для южных районов России.

Определение суммарной нагрузки от дома на ленточный монолитный фундамент

На основе имеющихся исходных данных делают расчёт суммарной нагрузки на фундамент. Также определяют габариты монолитной ленты. Необходимо, чтобы застройщики сделали расчёт в следующем порядке:

Кровля

Крыша из шифера двускатная. С учётом уклона кровли и её свесов применяют коэффициент 1,1. Нагрузка от кровли составит: 100 м 2 х1,1х40 кг/м 2 = 4000 кг.

Кирпичные стены

Чтобы определить нагрузку от стен, зная их толщину, нужно подсчитать их длину. Длина стен по периметру составит: (10 х 4) – (0,25 х 4) = 39 м. Вычет удвоенной толщины кирпичной кладки сделан потому, что оси плана дома проведены посередине толщины стен. Длина внутренней несущей стены составит 10 – 0,25 = 9,75 м. Общая длина несущих стен будет равна 48,75 п.м.

Объём кирпичной кладки составит: 48,75 х 0,25 х 2,7 = 32,9 м 3 . Полная нагрузка от кирпичных стен равна: 32,9 х 1600 = 52 670 кг.

Перекрытие из железобетонных плит

Одноэтажный дом имеет перекрытия в двух уровнях. Это перекрытие цоколя и потолок в доме. Площадь перекрытий равняется: 100 х 2 = 200 м 2 . Соответственно нагрузка от плит перекрытий будет равна: 200 м 2 х 500 кг/м 2 = 100000 кг.

Для расчёта снеговой нагрузки берут общую площадь кровли дома – 100 х 1,1 = 110 м 2 . Снеговая нагрузка составит: 110 м 2 х 50 кг/м 2 = 5 500 кг.

Норма этой нагрузки рассчитана на основе усреднённых величин веса технического оборудования, внутренних коммуникаций, отделки помещений, мебели и прочего. Удельный вес полезной нагрузки колеблется в пределах 18 – 22 кг/м 2 .

Расчёт полезной нагрузки производят на основе среднего показателя – 20 кг/м 2 . Вес составит: 100 м 2 х 20 кг/м 2 = 2000 кг.

Итого суммарная нагрузка на фундамент будет равна: 4 000 + 52670 + 100 000 +2 000 = 159 000кг.

Расчёт ширины монолитной ленты

Согласно вышеуказанной формуле определяют минимальную площадь подошвы фундамента:

(1,2 х 159 000 кг) : 2 кг/см 2 = 95 400 см 2 . То есть минимальная допустимая площадь подошвы основания дома будет равняться 10 м 2 .

Общая опорная площадь кирпичных стен определяется произведением длины в плане несущих стен на их толщину: 48,75 м х 0,25 м= 12,18 м 2 .

Из общепринятой практики минимальную ширину ленточного фундамента делают на 100 мм больше толщины стен.

В результате видно, что расчётная опорная площадь меньше минимальной опорной площади стен. Следовательно, ширина ленточного фундамента должна быть равна 250 мм + 100 мм = 350 мм.

Потребность в материалах для устройства монолитной ленты

Учитывая толщину промерзания грунта (0,7 м) и глубину уровня грунтовых вод (2,2 м), монолитную ленту делают мелко заглублённой – 1 м.

Для заливки опалубки используют бетон М 300. Объём потребности в бетонном растворе равен: 0,35 м х 1 м х 48,75 м= 17 м 3. . С учётом непредвиденных потерь потребность в бетоне составит 17,3 м 3 .

Арматурный каркас состоит из 4-х продольных арматурных стержней периодического профиля диаметром 12 мм. Так как поперечные стержни каркаса делают из тех же стержней, то общая потребность в арматуре составит: 50 м х 4 = 200 м.

Из всего вышесказанного можно сделать вывод о том, что высчитать ширину, высоту и длину ленточного фундамента для своего дома вполне под силу мало-мальски сведущим в строительном деле людям.

Подошва традиционного монолитного ленточного фундамента представляет собой платформу из железобетона, предназначенную для равномерного распределения нагрузки, которую создаёт фундамент дома на грунт.
Ширина подошвы обычно как минимум в два раза превышает ширину фундамента. В США сооружения подошвы требуют большинство местных строительных норм и правил для установки фундаментов на рыхлых песчаных и илистых грунтах.

Высота большинства подошв для фундаментов , которые нам приходится сооружать, составляет 30, а ширина - 60 см. Обычно, если проектом не предусматривается иное, мы усиливаем такую подошву двумя рядами стальных арматурных прутков 012 мм. В нашем случае грунт на дне котлована был таков, что для двухэтажного дома с размерами в плане 8x12 м без дополнительной подошвы, увеличивающей площадь опоры фундамента, обойтись было нельзя. Для штата Род-Айленд, в котором мы работаем, это обычное явление. Прежде чем приступить к сооружению подошвы , необходимо было разметить на дне котлована точное расположение фундамента дома .

Мы всегда ориентируемся по вешкам, установленным геодезистами при разметке стройплощадки ещё до начала рытья котлована. Обычно на дне котлована достаточно определить положение двух базовых точек - двух крайних углов одной из фундаментных стен. В большинстве случаев мы находим положение этих угловых точек с помощью шнура, натянув его между вешками, установленными геодезистами, и отвеса. По отвесу на дне котлована мы забиваем две свои вешки, используя для этого обрезки арматуры, чтобы не вынимать их, когда дело дойдёт до заливки бетона. Расстояние между этими двумя вешками должно точно соответствовать длине стены, указанной архитектором на плане. Чтобы быстро разметить положение двух других углов фундамента, необходимо рассчитать длину его диагонали. С помощью обычного калькулятора сделать это не так уж сложно. А зная длину диагонали и размеры фундамента в плане, можно легко и точно определить положение остальных двух углов и отметить их вешками. Делаем мы это следующим образом. Два члена бригады удерживают концы ленты двух рулеток в базовых точках, уже отмеченных вешками, пока третий член бригады, натянув ленты обеих рулеток, перекрещивает их на отметках длины диагонали и длины стены, а в точке пересечения забивает в землю очередную вешку. Чтобы исключить возможные ошибки, мы всегда дважды перепроверяем расстояния между всеми вбитыми на дне котлована вешками, сверяя их с размерами, указанными на плане. После того, как во все углы будут забиты вешки, мы натягиваем шнур от одного угла к другому и получаем контур всего фундамента целиком.
Теперь, установив все вешки, можно приступать к сооружению опалубки . Мы используем для этого доски сечением 5x30 см, соединённые между собой с помощью забитых в землю стальных П-образных скоб, которые удерживают внутреннюю и наружную стенки опалубки на расстоянии друг от друга, точно равном 60 см. Эти скобы являются "ноу-хау" нашей бригады. Мы их специально сделали на заказ, так как в продаже таких не бывает. Они оказались настолько удобными, что никакими другими приспособлениями для фиксации опалубки мы, как правило, больше не пользуемся.

Опалубку мы устанавливаем таким образом, чтобы стены фундамента располагались точно по центру подошвы (ширина фундаментных стен данного дома по проекту составляла 25 см). Начинаем работу по сооружению опалубки с того, что скрепляем под углом 90° гвоздями две доски сечением 5x30 см для формирования наружного угла и устанавливаем их на расстоянии 17,5 см от шнура. Затем параллельно доскам внешней опалубки устанавливаем и фиксируем с помощью стальных П-образных скоб доски внутренней стенки опалубки. Так, постепенно продвигаясь от одного угла к другому, мы продолжаем этот процесс до завершения установки всех внешних и внутренних стенок опалубки.
Фиксирующие опалубку П-образные скобы на прямых участках расставляем с шагом 100-120 см. В местах стыка двух досок их края соединяем с помощью забитых под углом гвоздей и устанавливаем крепежные скобы с обеих сторон от стыка.
Подгонять и подрезать доски опалубки по длине нам приходится довольно редко. Когда, например, две доски стыкуются недостаточно плотно, зазор мы заделываем с помощью короткой накладной доски, прибив её гвоздями с наружной стороны. А если та или иная доска оказывается немного длиннее, чем нужно, просто прибиваем её к смежной доске внахлёст. На образующиеся при этом на боковых кромках подошвы небольшие неровности просто не обращаем внимания. В конце концов, важен не внешний вид подошвы, так как она всё равно будет полностью зарыта в землю. Главное, чтобы готовая подошва имела прочность не ниже расчётной и успешно справлялась с возложенными на неё функциями. После того, как опалубка полностью установлена, мы производим частичную обратную засыпку грунта около её потенциально слабых точек, например, на стыке отдельных досок или же на участках, где было невозможно установить П-образные крепёжные скобы. Кроме того, обратная засыпка не позволяет бетону просочиться под опалубку и приподнять её.
Далее с помощью теодолита мы устанавливаем уровень верхней кромки подошвы фундамента . Она должна располагаться, во-первых, строго горизонтально, а во-вторых, точно на заданной глубине, указанной на плане архитектором. Отметки уровня фиксируем небольшими гвоздиками 2,5x50 мм, забивая их наполовину длины на расстоянии 0,5-1,0 м друг от друга по всему периметру с внутренней стороны досок опалубки. При укладке бетона они служат нам ориентиром для определения, на какую высоту следует заполнять опалубку.
Теперь всё готово к укладке бетона. Наилучшие котлованы - это те, к любой точке которых может легко подъехать бетоновоз. Но так, к сожалению, бывает очень редко. Поэтому обычно мы начинаем укладку с наиболее труднодоступных для бетоновоза участков, перемещая лопатами бетон вдоль опалубки до тех пор, пока эти участи не будут заполнены до требуемой высоты - до уровня гвоздей, фиксирующих высоту подошвы фундамента.

После того, как заливка бетона в опалубку завершена, мы приступаем к укладке вдоль всего периметра подошвы двух рядов стальных арматурных прутков D12,5 мм. Для этого прутки арматуры сначала раскладываем в два ряда поверх влажного бетона примерно на расстоянии 15 см от каждой стенки, подсовывая их под поперечные перекладины П-образных скоб. А затем утапливаем их в бетон на глубину примерно 20 см, используя в качестве инструмента обыкновенные штыковые лопаты. Бетон над утопленными прутками арматуры тщательно и аккуратно "проштыковываем" теми же лопатами, чтобы удалить попавший в него воздух.
Выровняв поверхность бетона до высоты гвоздей, фиксирующих уровень верхней кромки подошвы, мы осторожно приподнимаем все стальные П-образные скобы на несколько сантиметров. Обычно на 5-7 см, не больше, чтобы беспрепятственно выполнить две последние операции.

Верхнюю кромку подошвы мы тщательно выравниваем и затираем. На всех прямых участках подошвы точно вдоль центральной линии верхней кромки мы делаем шпоночную канавку глубиной 2,5-3,0 см и шириной 7-8 мм. Положения углов фундаментных стен мы отмечаем прямо на верхней кромке подошвы, прочертив риски острием гвоздя на слегка затвердевшей поверхности бетона.

Первая из них - это затирка верхней кромки подошвы. Кроме облегчения всех последующих работ по возведению стен фундамента, гладкая поверхность облегчает удаление грязи и мусора, который неизбежно попадает на верхнюю кромку во время демонтажа опалубки.
И наконец, завершающий этап в сооружении подошвы фундамента - это вырезание или выдавливание шпоночной канавки вдоль центральной осевой линии верхней кромки. Эта канавка должна обеспечить прочное и надёжное сцепление подошвы со стеной фундамента, которая будет возведена на ней в дальнейшем. Обычно мы делаем шпоночную канавку глубиной 2,5-3,0 см и шириной 7-8 см, просто вдавливая в бетон короткий брусок соответствующего сечения вдоль центральной линии верхней кромки подошвы. К моменту начала этой работы бетон обычно уже достаточно затвердевает, поэтому брусок оставляет за собой канавку, которая сама по себе не "заплывает" и не изменяет свою форму и размеры. Такие канавки мы делаем только на прямолинейных участках подошвы, не доводя их до углов примерно на 0,5-0,7 м. Поскольку углы являются самыми прочными частями фундаментной стены, беспокоиться о нарушении целостности фундамента в этих точках не стоит.
Прежде чем удалять опалубку, мы переносим с неё отметки положения углов фундаментных стен прямо на верхнюю кромку подошвы, прочертив риски остриём гвоздя на слегка затвердевшей поверхности бетона. Они будут служить ориентиром для установки опалубки при возведении стен фундамента.

Представляет собой платформу из железобетона, предназначенную для равномерного распределения нагрузки, которую создаёт фундамент дома на грунт. Ширина подошвы обычно как минимум в два раза превышает ширину фундамента. Сооружения подошвы требуют большинство местных строительных норм и правил для установки фундаментов на рыхлых песчаных и илистых грунтах.


Высота большинства подошв для фундаментов, которые нам приходится сооружать, составляет 30, а ширина - 60 см. Обычно, если проектом не предусматривается иное, мы усиливаем такую подошву двумя рядами стальных арматурных прутков диаметром 12 мм. В нашем случае грунт на дне котлована был таков, что для двухэтажного дома с размерами в плане 8x12 м без дополнительной подошвы, увеличивающей площадь опоры фундамента, обойтись было нельзя. Для Ленинградской области, в котором мы работаем, это обычное явление.

Прежде чем приступить к сооружению подошвы, необходимо было разметить на дне котлована точное расположение фундамента дома .

Мы всегда ориентируемся по вешкам, установленным геодезистами при разметке стройплощадки ещё до начала рытья котлована. Обычно на дне котлована достаточно определить положение двух базовых точек - двух крайних углов одной из фундаментных стен. В большинстве случаев мы находим положение этих угловых точек с помощью шнура, натянув его между вешками, установленными геодезистами, и отвеса. По отвесу на дне котлована мы забиваем две свои вешки, используя для этого обрезки арматуры, чтобы не вынимать их, когда дело дойдёт до заливки бетона. Расстояние между этими двумя вешками должно точно соответствовать длине стены, указанной архитектором на плане.

Чтобы быстро разметить положение двух других углов фундамента, необходимо рассчитать длину его диагонали. С помощью обычного калькулятора сделать это не так уж сложно. А зная длину диагонали и размеры фундамента в плане, можно легко и точно определить положение остальных двух углов и отметить их вешками. Делаем мы это следующим образом. Два члена бригады удерживают концы ленты двух рулеток в базовых точках, уже отмеченных вешками, пока третий член бригады, натянув ленты обеих рулеток, перекрещивает их на отметках длины диагонали и длины стены, а в точке пересечения забивает в землю очередную вешку. Чтобы исключить возможные ошибки, мы всегда дважды перепроверяем расстояния между всеми вбитыми на дне котлована вешками, сверяя их с размерами, указанными на плане. После того, как во все углы будут забиты вешки, мы натягиваем шнур от одного угла к другому и получаем контур всего ленточного фундамента целиком.

Теперь, установив все вешки, можно приступать к сооружению опалубки. Мы используем для этого доски сечением 5x30 см, соединённые между собой с помощью забитых в землю стальных П-образных скоб, которые удерживают внутреннюю и наружную стенки опалубки на расстоянии друг от друга, точно равном 60 см.

Опалубку мы устанавливаем таким образом, чтобы стены фундамента располагались точно по центру подошвы (ширина фундаментных стен данного дома по проекту составляла 25 см). Начинаем работу по сооружению опалубки с того, что скрепляем под углом 90° гвоздями две доски сечением 5x30 см для формирования наружного угла и устанавливаем их на расстоянии 17,5 см от шнура. Затем параллельно доскам внешней опалубки устанавливаем и фиксируем с помощью стальных П-образных скоб доски внутренней стенки опалубки. Так, постепенно продвигаясь от одного угла к другому, мы продолжаем этот процесс до завершения установки всех внешних и внутренних стенок опалубки.

Фиксирующие опалубку П-образные скобы на прямых участках расставляем с шагом 100-120 см. В местах стыка двух досок их края соединяем с помощью забитых под углом гвоздей и устанавливаем крепёжные скобы с обеих сторон от стыка.

Подгонять и подрезать доски опалубки по длине нам приходится довольно редко. Когда, например, две доски стыкуются недостаточно плотно, зазор мы заделываем с помощью короткой накладной доски, прибив её гвоздями с наружной стороны. А если та или иная доска оказывается немного длиннее, чем нужно, просто прибиваем её к смежной доске внахлёст. На образующиеся при этом на боковых кромках подошвы небольшие неровности просто не обращаем внимания. В конце концов, важен не внешний вид подошвы, так как она всё равно будет полностью зарыта в землю. Главное, чтобы готовая подошва имела прочность не ниже расчётной и успешно справлялась с возложенными на неё функциями.

После того, как опалубка полностью установлена, мы производим частичную обратную засыпку грунта около её потенциально слабых точек, например, на стыке отдельных досок или же на участках, где было невозможно установить П-образные крепёжные скобы. Кроме того, обратная засыпка не позволяет бетону просочиться под опалубку и приподнять её.

Далее с помощью теодолита мы устанавливаем уровень верхней кромки подошвы фундамента. Она должна располагаться, во-первых, строго горизонтально, а во-вторых, точно на заданной глубине, указанной на плане архитектором. Отметки уровня фиксируем небольшими гвоздиками 02,5x50 мм, забивая их наполовину длины на расстоянии 0,5-1,0 м друг от друга по всему периметру с внутренней стороны досок опалубки. При укладке бетона они служат нам ориентиром для определения, на какую высоту следует заполнять опалубку.

Теперь всё готово к укладке бетона. Наилучшие котлованы - это те, к любой точке которых может легко подъехать бетоновоз. Но так, к сожалению, бывает очень редко. Поэтому обычно мы начинаем укладку с наиболее труднодоступных для бетоновоза участков, перемещая лопатами бетон вдоль опалубки до тех пор, пока эти участи не будут заполнены до требуемой высоты - до уровня гвоздей, фиксирующих высоту подошвы фундамента.

После того, как заливка бетона в опалубку завершена, мы приступаем к арматурных прутков 012,5 мм. Для этого прутки арматуры сначала раскладываем в два ряда поверх влажного бетона примерно на расстоянии 15 см от каждой стенки, подсовывая их под поперечные перекладины П-образных скоб. А затем утапливаем их в бетон на глубину примерно 20 см, используя в качестве инструмента обыкновенные штыковые лопаты. Бетон над утопленными прутками арматуры тщательно и аккуратно «проштыковываем» теми же лопатами, чтобы удалить попавший в него воздух.

Выровняв поверхность бетона до высоты гвоздей, фиксирующих уровень верхней кромки подошвы, мы осторожно приподнимаем все стальные П-образные скобы на несколько сантиметров. Обычно на 5-7 см, не больше, чтобы беспрепятственно выполнить две последние операции. Первая из них - это затирка верхней кромки подошвы. Кроме облегчения всех последующих работ по возведению стен фундамента, гладкая поверхность облегчает удаление грязи и мусора, который неизбежно попадает на верхнюю кромку во время демонтажа опалубки. И наконец, завершающий этап в сооружении подошвы фундамента - это вырезание или выдавливание шпоночной канавки вдоль центральной осевой линии верхней кромки. Эта канавка должна обеспечить прочное и надёжное сцепление подошвы со стеной фундамента, которая будет возведена на ней в дальнейшем. Обычно мы делаем шпоночную канавку глубиной 2,5-3,0 см и шириной 7-8 см, просто вдавливая в бетон короткий брусок соответствующего сечения вдоль центральной линии верхней кромки подошвы. К моменту начала этой работы бетон обычно уже достаточно затвердевает, поэтому брусок оставляет за собой канавку, которая сама по себе не «заплывает» и не изменяет свою форму и размеры. Такие канавки мы делаем только на прямолинейных участках подошвы, не доводя их до углов примерно на 0,5-0,7 м. Поскольку углы являются самыми прочными частями фундаментной стены, беспокоиться о нарушении целостности фундамента в этих точках не стоит.

Прежде чем удалять опалубку, мы переносим с неё отметки положения углов фундаментных стен прямо на верхнюю кромку подошвы, прочертив риски остриём гвоздя на слегка затвердевшей поверхности бетона. Они будут служить ориентиром для установки опалубки при возведении стен фундамента.