Все реакции органической химии. Типы химических реакций в органической химии — Гипермаркет знаний

Чаще всего органи­ческие реакции классифицируют по типу разрыва химических связей в реагирующих частицах. Из их числа можно выделить две большие группы реакций - радикальные и ионные ./>

Радикальные реакции - это процессы, идущие с гемолитическим разрывом ковалентной связи. При гемолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гемолитического разрыва образуются свободные ра­дикалы:/>

X:Y → X . +.Y

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

Ионные реакции - это процессы, идущие с гетеролитическим разрывом ковалентных связей, когда оба электрона связи остают­ся с одной из ранее связанных частиц./>

X:Y → X + + :Y —

В результате гетеролитического разрыва связи получаются за­ряженные частицы: нуклеофильная и электрофильная .

Нуклеофильная частица (нуклеофил) - это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь./>

Электрофильная частица (электрофил) — это частица, имеющая свободную орбиталь на внешнем электронном уровне. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той части­цы, с которой он взаимодействует./>

Частица с положительным зарядом на атоме углерода назы­вается карбокатионом .

Согласно другой классификации, органические реакции делятся на термические , являющиеся результатом столкновений моле­кул при их тепловом движении, и фотохимические , при которых молекулы, поглощая квант света Av, переходят в более высокие энергетические состояния и далее подвергаются химическим пре­вращениям. Для одних и тех же исходных соединений термиче­ские и фотохимические реакции обычно приводят к различным продуктам. Классическим примером здесь является термическое и фотохимическое хлорирование бензола - в первом случае образуется хлорбензол, во втором случае - гексахлорциклогексан.

Кроме того, в органической химии реакции часто классифици­руются так же, как и в неорганической химии - по структурно­му признаку . В органической химии все структурные изменения рассматриваются относительно атома (или атомов) углерода, уча­ствующих в реакции. Наиболее часто встречаются следующие ти­пы превращений:

1) присоединение R-CH=CH 2 + XY/>→ RCHX-CH 2 Y;

2) замещение R-CH 2 X + Y/>→ R-CH 2 Y + X;

3) отщепление R-CHX-CH 2 Y/>→ R-CH=CH 2 + XY;

(элиминирование)

4) полимеризация n (СН 2 =СН 2) />→ (-CH 2 -СН 2 -)n

В большинстве случаев элиминируемая/> молекула образуется при соединении двух частиц, отщепленных от сосед­них атомов углерода. Такой процесс называется 1,2-элиминированием.

Кроме приведенных четырех типов простейших механизмов, реакций на практике употребляются еще следующие обозначения некоторых классов реакций, приведенные ниже.

Окисление - реакция, при которой под действием окисляю­щего реагента вещество соединяется с кислородом (либо другим электроотрицательным элементом, например, галогеном) или те­ряет водород (в виде воды или молекулярного водорода)./>

Действие окисляющего реагента (окисление) обозначается в схеме реакции символом [О], а действие восстанавливающего реагента (восстановление) - сим­волом [Н].

Гидрирование — реакция, представляющая собой частный случай восстановления. Водород присоединяется к кратной связи или ароматическому ядру в присутствии катализатора. />

Конденсация - реакция, при которой происходит рост цепи. Сначала происходит присоединение, за которым обычно следует элиминирование./>

Пиролиз - реакция, при которой соединение подвергается термическому разложению без доступа воздуха (и обычно при пониженном давлении) с образованием одного или нескольких продуктов. Примером пиролиза может служить термическое разложение каменного угля. Иногда вместо пиролиза употребляется термин "сухая перегонка" (в случае разложения каменного угля используется также термин "карбонизация")./>

Некоторые реакции получают свои названия по продуктам, к которым они приводят. Так, если в молекулу вводится метильная группа, то говорят о метилировании , если ацетил - то об ацетилировании , если хлор - то о хлорировании и т.д.

Тема урока: Типы химических реакций в органической химии.

Тип урока: урок изучения и первичного закрепления нового материала.

Цели урока: создать условия для формирования знаний об особенностях протекания химических реакций с участием органических веществ при знакомстве с их классификацией, закрепить умения писать уравнения реакций.

Задачи урока :

Обучающие: изучить типы реакций в органической химии, основываясь на знания обучающихся о типах реакций в неорганической химии и их сравнении с типами реакций в органической.

Развивающие: способствовать развитию логического мышления и интеллектуальных умений (анализировать, сравнивать, устанавливать причинно-следственные связи).

Воспитательные: продолжить формирование культуры умственного труда; коммуникационных навыков: прислушиваться к чужому мнению, доказывать свою точку зрения, находить компромиссы.

Методы обучения: словесные (рассказ, объяснение, проблемное изложение); наглядные (мультимедийное наглядное пособие); эвристические (письменные и устные упражнения, решение задач, тестовые задания).

Средства обучения: реализация внутри- и межпредметных связей, мультимедийное наглядное пособие (презентация), символико-графическая таблица.

Технологии: элементы педагогики сотрудничества, личностно-ориентированного обучения (компетентностно-ориентированное обучение, гуманно-личностная технология, индивидуальный и дифференцированный подход), информационно-коммуникативной технологии, здоровьесберегающих образовательных технологий (организационно-педагогическая технология).

Краткое описание хода урока.

I. Организационный этап: взаимные приветствия педагога и учащихся; проверка подготовленности учащихся к уроку; организация внимания и настрой на урок.

Проверка выполнения домашнего задания. Вопросы для проверки:1.Закончить предложения: а) Изомеры – это… б) Функциональная группа – это … 2. Распределить по классам указанные формулы веществ (формулы предлагаются на карточках) и назовите классы соединений, к которым они относятся. 3. Составьте возможные сокращённые структурные формулы изомеров, отвечающих молекулярным формулам (например: С 6 Н 14 , С 3 Н 6 О)

Сообщение темы и задач изучения нового материала; показ его практической значимости.

II. Изучение нового материала:

Актуализация знаний. (Рассказ педагога опирается на схемы слайдов, которые обучающиеся переносят в тетради в качестве опорного конспекта)

Химические реакции – основной объект науки химия. (Слайд 2)

В процессе химических реакций осуществляется превращение одних веществ в другие.

Реагент 1 + Реагент 2 = Продукты (неорганическая химия)

Субстрат + Атакующий реагент = Продукты (органическая химия)

Во многих органических реакциях изменению подвергаются не все молекулы, а их реакционные части (функциональные группы, их отдельные атомы и др.), которые называются реакционными центрами. Субстратом служит то вещество, в котором у атома углерода происходит разрыв старой и образование новой связи, а действующее на него соединение или его реакционную частицу называют реагентом.

Неорганические реакции классифицируют по нескольким признакам: по числу и составу исходных веществ и продуктов (соединения, разложения, замещения, обмена), по тепловому эффекту (экзо- и эндотермические), по изменению степени окисления атомов, по обратимости процесса, по фазе (гомо- и гетерогенные), по использованию катализатора (каталитические и некаталитические). (Слайды 3,4)

Итогом этапа урока является выполнение обучающимися задания (слайд 5), позволяющего проверить навыки в написании уравнений химических реакций, расстановке стехиометрических коэффициентов, классификации неорганических реакций. (Задания предлагаются разноуровневые)

(Упражнение «мозговой» гимнастики на развитие познавательно-психических процессов – «Сова»: улучшает зрительную память, внимание и снимает напряжение, которое развивается при длительном сидении.) Ухватитесь правой рукой за левое плечо и сожмите его, повернитесь влево так, чтобы смотреть назад, дышите глубоко и разведите плечи назад. Теперь посмотрев через другое плечо, уроните подбородок на грудь и глубоко дышите, давая мышцам расслабиться .

Изложение нового материала. (Во время изложения материала обучающиеся в тетрадях делают записи, на которых педагог акцентирует внимание – информация слайдов)

Реакции с участием органических соединений подчиняются тем же законам (закон сохранения массы и энергии, закон действия масс, закон Гесса и др.) и проявляют те же закономерности (стехиометрические, энергетические, кинетические), что и реакции неорганических веществ. (Слайд 6)

Органические реакции принято классифицировать по механизмам протекания, по направлению и конечным продуктам реакции. (Слайд 7)

Способ разрыва ковалентных связей определяют тип механизма реакций. Под механизмом реакции понимают последовательность стадий протекания реакции с указанием промежуточных частиц, образующихся на каждой из этих стадий. (Механизм реакции описывает её путь, т.е. последовательность элементарных актов взаимодействия реагентов, через которые она протекает.)

В органической химии выделяют два основных типа механизма реакций: радикальный (гомолитический) и ионный (гетеролитический). (Слайд 8)

При гомолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гомолитического разрыва образуются свободные радикалы:

X:Y → X . + . Y

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

В результате гетеролитического разрыва связи получаются заряженные частицы: нуклеофильная и электрофильная.

X:Y → X + + :Y -

Нуклеофильная частица (нуклеофил) - это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь.

Электрофильная частица (электрофил) - это частица, имеющая свободную орбиталь на внешнем электронном уровне. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той частицы, с которой он взаимодействует.

Радикальные реакции имеют характерный цепной механизм протекания, который включает три стадии: зарождения (инициирование), развитие (рост) и обрыв цепи. (Слайд 9)

Ионные реакции происходят без разрыва электронных пар, образующих химические связи: оба электрона переходят на орбиталь одного из атомов продукта реакции с образованием аниона. (Слайд 10) Гетеролитический распад ковалентной полярной связи приводит к образованию нуклеофилов (анионов) и электрофилов (катионов). В зависимости от природы атакующего реагента реакции могут быть нуклеофильными и электрофильными.

По направлению и конечному результату химического превращения органические реакции делят на следующие типы: замещения, присоединения, отщепления (элиминирования), перегруппировки (изомеризации), окисления и восстановления. (Слайд 11)

Под замещением понимают замену атома или группы атомов на другой атом или группу атомов. В результате реакции замещения образуются два разных продукта.

R-CH 2 X + Y→ R-CH 2 Y + X

Под реакцией присоединения понимают введение атома или группы атомов в молекулу непредельного соединения, что сопровождается разрывом в этом соединении π-связей. В ходе взаимодействия двойные связи превращаются в одинарные, а тройные – в двойные или одинарные.

R-CH=CH 2 + XY→ RCHX-CH 2 Y

Проблема: К какому типу реакций мы можем отнести реакцию полимеризации? Докажите её принадлежность к определённому типу реакций и приведите пример.

К реакциям присоединения относятся и реакции полимеризации (например: получение полиэтилена из этилена).

n(СН 2 =СН 2 ) → (-CH 2 -СН 2 -) n

Реакции элиминирования, или отщепления, - это реакции, в ходе которых происходит отщепление атомов или их групп от органической молекулы с образованием кратной связи.

R-CHX-CH 2 Y→ R-CH=CH 2 + XY

Реакции перегруппировки (изомеризации). В этом типе реакций имеет место перегруппировка атомов и их групп в молекуле.

Реакции поликонденсации относятся к реакциям замещения, но их часто выделяют как особый тип органических реакций, имеющих специфику и большое практическое значение.

Реакции окисления- восстановления сопровождаются изменением степени окисления атома углерода в соединениях, где атом углерода – реакционный центр.

Окисление - реакция, при которой под действием окисляющего реагента вещество соединяется с кислородом (либо другим электроотрицательным элементом, например, галогеном) или теряет водород (в виде воды или молекулярного водорода). Действие окисляющего реагента (окисление) обозначается в схеме реакции символом [О].

[O]

CH 3 CHO → CH 3 COOH

Восстановление - реакция, обратная окислению. Под действием восстанавливающего реагента соединение принимает атомы водорода или теряет атомы кислорода: действие восстанавливающего реагента (восстановление) обозначается символом [Н].

[H]

CH 3 COCH 3 → CH 3 CH(OH)CH 3

Гидрирование - реакция, представляющая собой частный случай восстановления. Водород присоединяется к кратной связи или ароматическому ядру в присутствии катализатора.

Для закрепления изученного материала обучающиеся выполняют тестовое задание: слайды 12,13.

III. Домашнее задание: § 8 (упр. 2), 9

IV. Подведение итогов

Выводы: (Слайд 14)

Органические реакции подчиняются общим законам (закону сохранения массы и энергии) и общим закономерностям их протекания (энергетическим, кинетическим – раскрывающим влияние различных факторов на скорость реакции).

Они имеют общие для всех реакций признаки, но имеют и свои характерные особенности.

По механизму протекания реакции делятся на гомолитические (свободнорадикальные) и гетеролитические (электрофильно-нуклеофильные).

По направлению и конечному результату химического превращения различают реакции: замещения, присоединения, отщепления (элиминирования), перегруппировки (изомеризации), поликонденсации, окисления и восстановления.

Используемая литература: УМК: О.С. Габриелян и др. Химия 10 М. Дрофа 2013

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Типы химических реакций в органической химии.

Химическая реакция – превращение одних веществ в другие. Вещества, полученные в результате реакции, отличаются от исходных веществ составом, строением и свойствами. Реагент 1 + Реагент 2 = Продукты Субстрат + Атакующий = Продукты реагент

Признаки классификации химических реакций в неорганической химии по числу и составу исходных веществ и продуктов по тепловому эффекту по изменению степени окисления атомов по обратимости процесса по фазе по использованию катализатора

Классификация по числу и составу исходных и образующихся веществ: Реакции соединения: А + В = АВ Zn + Cl 2 = ZnCl 2 CaO + CO 2 = CaCO 3 Реакции разложения: АВ = А + В 2H 2 O = 2H 2 + O 2 Cu(OH) 2 = CuO + H 2 O Реакции замещения: АВ + С = А + СВ CuSO 4 + Fe = Cu + FeSO 4 Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3 Реакции обмена: АВ + CD = AD + CB CuO + H2SO4 = CuSO4 + H2O NaOH + HCl = NaCl + H 2 O

Даны схемы реакций: 1. Гидроксид меди(II) → оксид меди(II) + вода 2. Хлорид бария + сульфат натрия → … 3. Соляная кислота + цинк → хлорид цинка + водород 4. Оксид фосфора(V) + вода → … I уровень: Укажите типы реакций, запишите одно из уравнений (по выбору). II уровень: Укажите типы реакций, запишите одно из уравнений, в котором не указаны продукты (по выбору). III уровень: Укажите типы реакций и запишите все уравнения.

Реакции с участием органических соединений подчиняются тем же законам (закон сохранения массы и энергии, закон действия масс, закон Гесса и др.) и проявляют те же закономерности (стехиометрические, энергетические, кинематические) , что и реакции неорганические.

Органические реакции принято классифицировать по механизмам протекания Под механизмом реакции понимают последовательность отдельных стадий протекания реакции с указанием промежуточных частиц, образующихся на каждой из этих стадий. по направлению и конечным продуктам реакции - присоединения; - отщепления (элимирования); - замещения; - перегруппировки (изомеризации); - окисления; - восстановления.

Способ разрыва ковалентной связи определяет тип механизма реакций: Радикальный (гомолитический) X:Y → X . + . Y R . (X . , . Y) – радикалы (свободные атомы или частицы с неспаренными электронами, неустойчивые и способные вступать в химические превращения) Ионный (гетеролитический) X:Y → X + + :Y - X + - электрофильный реагент (электрофил: любящий электрон) :Y - - нуклеофильный реагент (нуклеофил: любящий протон)

Радикальные реакции имеют цепной механизм, включающий стадии: зарождение, развитие и обрыв цепи. Зарождение цепи (инициирование) Cl 2 → Cl . + Cl . Рост (развитие) цепи СН 4 + Cl . → СН 3 . + Н Cl CH 3 . + Cl 2 → CH 3 -Cl + Cl . Обрыв цепи CH 3 . + Cl . → CH 3 Cl CH 3 . + CH 3 . → CH 3 -CH 3 Cl . + Cl . → Cl 2

Ионные реакции происходят без разрыва электронных пар, образующих химические связи: оба электрона переходят на орбиталь одного из атомов продукта реакции с образованием аниона. Гетеролитический распад ковалентной полярной связи приводит к образованию нуклеофилов (анионов) и электрофилов (катионов). CH 3 -Br + Na + OH - → CH 3 -OH + Na + Br - субстрат реагент продукты реакции (нуклеофил) C 6 H 5 -H + HO: NO 2 → C 6 H 5 -NO 2 + H-OH субстрат реагент продукты реакции (электрофил)

Классификация по направлению и конечному результату Реакции замещения А-В + С → А-С + В Реакции присоединения С=С + А-В → А-С-С-В Реакции отщепления (элиминирования) А-С-С-В → С=С + А-В Реакции перегруппировки (изомеризации) Х-А-В → А-В-Х Реакции окисления и восстановления, сопровождаются изменением степени окисления атома углерода в соединениях, где атом углерода – реакционный центр. Проблема: К какому типу реакций можно отнести реакцию полимеризации? Докажите её принадлежность к определённому типу реакций и приведите пример.

Тестовое задание. 1. Соотнесите: Раздел химии Тип реакции Неорганическая а) замещения б) обмена Органическая в) соединения г) разложения д) отщепления е) изомеризации ж) присоединения 2. Соотнесите: Схема реакции Тип реакции АВ + С → АВ + С а) замещения АВС → АВ + С б) присоединения АВС → АСВ в) отщепления АВ + С → АС + В г) изомеризации

3. Бутан вступает в реакцию с веществом, формула которого: 1) Н 2 О 2) С 3 Н 8 3) Cl 2 4) HCl 4 . Субстратом в предложенных схемах реакций является вещество СН 3 -СООН (А) + С 2 Н 5 -ОН (Б) → СН 3 СООС 2 Н 5 + Н 2 О СН 3 -СН 2 -ОН (A) + H-Br (B) → CH 3 -CH 2 -Br + H 2 O CH 3 -CH 2 -Cl (A) + Na-OH (B) → CH 2 =CH 2 + NaCl + H 2 O 5. Левой части уравнения С 3 Н 4 + 5О 2 → … соответствует правая часть: → С 3 Н 6 + Н 2 О → С 2 Н 4 + Н 2 О → 3СО 2 + 4Н 2 О → 3СО 2 + 2Н 2 О 6. Объём кислорода, который потребуется для полного сгорания 5л метана, равен 1) 1л 2) 5л 3) 10л 4) 15л

Выводы Органические реакции подчиняются общим законам и общим закономерностям их протекания. Они имеют общие для всех реакций признаки, но имеют и свои характерные особенности. По механизму протекания реакции делятся на свободнорадикальные и ионные. По направлению и конечному результату химического превращения: замещения, присоединения, окисления и восстановления, изомеризации, отщепления, поликонденсации и др.


При протекании химических реакций происходит разрыв одних и возникновение других связей. Химические реакции условно делят на органические и неорганические. Органическими реакциям принято считать реакции, в которых, по крайней мере, одно из реагирующих веществ является органическим соединением, изменяющим свою молекулярную структуру в процессе реакции. Отличием органических реакций от неорганических является то, что, как правило, в них участвуют молекулы. Скорость таких реакции низка, а выход продукта обычно составляет всего лишь 50-80 %. Для повышения скорости реакции применяют катализаторы, повышают температуру или давление. Далее рассмотрим типы химических реакций в органической химии.

Классификация по характеру химических превращений

  • Реакции замещения
  • Реакции присоединения
  • Реакция изомеризации и перегруппировка
  • Реакции окисления
  • Реакции разложения

Реакции замещения

В ходе реакций замещения один атом или группа атомов в начальной молекуле замещается на иные атомы или группы атомов, образуя новую молекулу. Как правило, такие реакции характерны для насыщенных и ароматических углеводородов, например:

Реакции присоединения

При протекании реакций присоединения из двух или более молекул веществ образуется одна молекула нового соединения. Такие реакции характерны для ненасыщенных соединений. Различают реакции гидрирования (восстановления), галогенирования, гидрогалогенирования, гидратации, полимеризации и т.п:

  1. Гидрирование – присоединение молекулы водорода:

Реакция элиминирования (отщепления)

В результате реакций отщепления органические молекулы теряют атомы или группы атомов, и образуется новое вещество, содержащее одну или несколько кратных связей. К реакциям элиминирования относятся реакции дегидрирования , дегидратации , дегидрогалогенирования и т.п.:

Реакции изомеризации и перегруппировка

В ходе таких реакций происходит внутримолекулярная перестройка, т.е. переход атомов или групп атомов с одного участка молекулы в другое без изменения молекулярной формулы вещества, участвующего в реакции, например:

Реакции окисления

В результате воздействия окисляющего реагента происходит повышение степени окисления углерода в органическом атоме, молекуле или ионе процесс за счет отдачи электронов, вследствие чего образуется новое соединение:

Реакции конденсации и поликонденсации

Заключаются во взаимодействии нескольких (двух и более) органических соединений с образованием новых С-С связей и низкомолекулярного соединения:

Поликонденсация – образование молекулы полимера из мономеров, содержащих функциональные группы с выделением низкомолекулярного соединения. В отличие от реакции полимеризации, в результате которых образуется полимер, имеющий состав, аналогичный мономеру, в результате реакций поликонденсации состав образованного полимера отличается от его мономера:

Реакции разложения

Это процесс расщепления сложного органического соединения на менее сложные или простые вещества:

С 18 H 38 → С 9 H 18 + С 9 H 20

Классификация химических реакций по механизмам

Протекание реакций с разрывом ковалентных связей в органических соединениях возможно по двум механизмам (т.е. пути, приводящему к разрыву старой связи и образованию новой) – гетеролитическому (ионному) и гомолитическому (радикальному).

Гетеролитический (ионный) механизм

В реакциях, протекающих по гетеролитическому механизму образуются промежуточные частицы ионного типа с заряженным атомом углерода. Частицы, несущие положительный заряд называются карбкатионы, отрицательный – карбанионы. При этом происходит не разрыв общей электронной пары, а ее переход к одному из атомов, с образованием иона:

Склонность к гетеролитическому разрыву проявляют сильно полярные, например Н–O, С–О и легко поляризуемые, например С–Вr, С–I связи.

Реакции, протекающие по гетеролитическому механизму делят на нуклеофильные и электрофильные реакции. Реагент, располагающий электронной парой для образования связи называют нуклеофильным или электронодонорным. Например, HO — ,RO — , Cl — , RCOO — , CN — , R — , NH 2 , H 2 O, NH 3 , C 2 H 5 OH, алкены, арены.

Реагент, имеющий незаполненную электронную оболочку и способные присоединить пару электронов в процессе образования новой связи.называют электрофильным реагентам относятся следующие катионы: Н + , R 3 C + , AlCl 3 , ZnCl 2 , SO 3 , BF 3 , R-Cl, R 2 C=O

Реакции нуклеофильного замещения

Характерны для алкил- и арилгалогенидов:

Реакции нуклеофильного присоединения

Реакции электрофильного замещения


Реакции электрофильного присоединения

Гомолитический (радикальный механизм)

В реакциях, протекающих по гомолитическому (радикальному) механизму на первой стадии происходит разрыв ковалентной связи с образованием радикалов. Далее образовавшийся свободный радикал выступает в качестве атакующего реагента. Разрыв связи по радикальному механизму свойственен для неполярных или малополярных ковалентных связей (С–С, N–N, С–Н).

Различают реакции радикального замещения и радикального присоединения

Реакции радикального замещения

Характерны для алканов

Реакции радикального присоединения

Характерны для алкенов и алкинов

Таким образом, мы рассмотрели основные типы химических реакций в органической химии

Категории ,

Занятие 2. Классификация реакций в органической химии. Упражнения на изомерию и гомологи

КЛАССИФИКАЦИЯ РЕАКЦИЙ В ОРГАНИЧЕСКОЙ ХИМИИ.

Существуют три основные классификации органических реакций.

1 Классификация по способу разрыва ковалентных связей в молекулах реагирующих веществ.

§ Реакции, протекающие по механизму свободнорадикального (гомолитического) разрыва связей. Такому разрыву подвергаются малополярные ковалентные связи. Образующиеся частицы называются свободными радикалами – хим. частица с неспаренным электроном, обладающая высокой химической активностью. Типичным примером такой реакции является галогенирование алканов, например :

§ Реакции, протекающие по механизму ионного (гетеролитического) разрыва связей. Такому разрыву подвергаются полярные ковалентные связи. В момент реакции образуются органические ионные частицы – карбкатион (ион, содержащий атом углерода с положительным зарядом) и карбанион (ион, содержащий атом углерода с отрицательным зарядом). Примером такой реакции может служить реакция гидрогалогенирования спиртов, например:

2. Классификация по механизму протекания реакции.

§ Реакции присоединения – реакция, в ходе которой из двух реагирующих молекул образуется одна (вступают непредельные или циклические соединения). В качестве примера приведите реакцию присоединения водорода к этилену:

§ Реакции замещения – реакция, в результате которой происходит обмен одного атома или группы атомов на другие группы или атомы. В качестве примера приведите реакцию взаимодействия метана с азотной кислотой:

§ Реакции отщепления (элиминирования) – отделение небольшой молекулы от исходного органического вещества. Выделяют a-элиминирование (отщепление происходит от одного и того же атома углерода, образуются неустойчивые соединения – карбены); b-элиминирование (отщепление происходит от двух соседних атомов углерода, образуются алкены и алкины); g-элиминирование (отщепление происходит от более удаленных атомов углерода, образуются циклоалканы). Приведите примеры вышеперечисленных реакций:

§ Реакции разложения – реакции, в результате которой из одной молекулы орг. соединения образуется несколько более простых. Типичным примером такой реакции служит крекинг бутана:

§ Реакции обмена – реакции, в процессе которых молекулы сложных реагентов обмениваются своими составными частями. В качестве примера приведите реакцию взаимодействия уксусной кислоты и гидроксида натрия:

§ Реакции циклизации – процесс образования циклической молекулы из одной или нескольких ациклических. Напишите реакцию получения циклогексана из гексана:

§ Реакции изомеризации – реакция перехода одного изомера в другой при определенных условиях. Приведите пример изомеризации бутана:

§ Реакции полимеризации – цепной процесс, последовательное соединение низкомолекулярных молекул в более крупные высокомолекулярные путем присоединения мономера к активному центру, находящемуся на конце растущей цепи. Полимеризация не сопровождается образованием побочных продуктов. Типичным примером является реакция образования полиэтилена:

§ Реакции поликонденсации – последовательное соединение мономеров в полимер, сопровождающееся образованием низкомолекулярных побочных продуктов (воды, аммиака, галогеноводорода и т.д.). В качестве примера напишите реакцию образования фенолформальдегидной смолы:

§ Реакции окисления

а) полное окисление (горение), например:

б) неполное окисление (возможно окисление кислородом воздуха или сильными окислителями в растворе – KMnO 4 , K 2 Cr 2 O 7). В качестве примера запишите реакции каталитического окисления метана кислородом воздуха и варианты окисления этилена в растворах с разным значением рН:

3. Классификация по химизму реакции.

· Реакция галогенирования – введение в молекулу орг. соединения атома галогена путем замещения или присоединения (заместительное или присоединительное галогенирование). Напишите реакции галогенирования этана и этена:

· Реакция гидрогалогенирования – присоединение галогеноводородов к непредельным соединениям. Реакционная способность возрастает с увеличением молярной массы Hhal. В случае ионного механизма реакции присоединение идет по правилу Марковникова: ион водорода присоединяется к наиболее гидрогенизированному атому углерода. Приведите пример реакции взаимодействия пропена и хлороводорода:

· Реакция гидратации – присоединение воды к исходному органическому соединению, подчиняется правилу Марковникова. В качестве примера запишите реакцию гидратации пропена:

· Реакция гидрирования – присоединение водорода к органическому соединению. Обычно проводят в присутствии металлов VIII группы Периодической системы (платина, палладий) в качестве катализаторов. Напишите реакцию гидрирования ацетилена:

· Реакция дегалогенирования – отщепление атома галогена от молекулы орг. соединения. В качестве примера приведите реакцию получения бутена-2 из 2,3-дихлорбутана:

· Реакция дегидрогалогенирования – отщепление молекулы галогеноводорода от органической молекулы с образованием кратной связи или цикла. Обычно подчиняется правилу Зайцева: водород отщепляется от наименее гидрогенизированного атома углерода. Запишите реакцию взаимодействия 2-хлорбутана со спиртовым раствором гидроксида калия:

· Реакция дегидратации – отщепление молекулы воды от одной или нескольких молекул орг. вещества (внутримолекулярная и межмолекулярная дегидратация). Осуществляется при высокой температуре или в присутствии водоотнимающих средств (конц. H 2 SO 4 , P 2 O 5). Приведите примеры дегидратации этилового спирта:

· Реакция дегидрирования – отщепление молекулы водорода от орг. соединения. Напишите реакцию дегидрирования этилена:

· Реакция гидролиза – обменная реакция между веществом и водой. Т.к. гидролиз в большинстве случаев обратим, его проводят в присутствии веществ, связывающих продукты реакции, или удаляют продукты из сферы реакции. Гидролиз ускоряется в кислой или щелочной среде. Приведите примеры водного и щелочного (омыление) гидролиза этилового эфира уксусной кислоты:

· Реакция этерификации – образование сложного эфира из органической или неорганической кислородсодержащей кислоты и спирта. В качестве катализатора применяют конц. серную или соляную кислоты. Процесс этерификации обратим, поэтому продукты необходимо удалять из сферы реакции. Запишите реакции этерификации этилового спирта с муравьиной и с азотной кислотами:

· Реакция нитрования – введение группы –NO 2 в молекулы орг. соединений, например реакция нитрования бензола:

· Реакция сульфирования – введение группы –SO 3 Н в молекулы орг. соединений. Запишите реакцию сульфирования метана:

· Реакция алкилирования – введение радикала в молекулы орг. соединений вследствие реакций обмена или присоединения. В качестве примера запишите реакции взаимодействия бензола с хлорэтаном и с этиленом:

Упражнения на изомерию и гомологи

1. Укажите, какие из следующих веществ являются гомологами по отношению друг к другу: С 2 Н 4 , С 4 Н 10 , С 3 Н 6 , С 6 Н 14 , С 6 Н 6 , С 6 Н 12 , С 7 Н 12 , С 5 Н 12 , С 2 Н 2 .

2. Составьте структурные формулы и дайте названия всем изомерам состава С 4 Н 10 О (7 изомеров).

3. Продукты полного сгорания 6,72л смеси этана и его гомолога, имеющего на один атом углерода больше, обработали избытком известковой воды, при этом образовалось 80г осадка. Какого гомолога в исходной смеси было больше? Определите состав исходной смеси газов. (2,24л этана и 4,48л пропана).

4. Составьте структурную формулу алкана с относительной плотностью паров по водороду 50, в молекуле которого имеется по одному третичному и четвертичному атому углерода.

5. Среди предложенных веществ выделите изомеры и составьте их структурные формулы: 2,2,3,3,-тетраметилбутан; н-гептан; 3-этилгексан; 2,2,4-триметилгексан; 3-метил-3-этилпентан.

6. Вычислите плотность паров по воздуху, по водороду и по азоту пятого члена гомологического ряда алкадиенов (2,345; 34; 2,43).

7. Напишите структурные формулы всех алканов, содержащих 82,76% углерода и 17,24% водорода по массе.

8. На полное гидрирование 2,8г этиленового углеводорода израсходовали 0,896л водорода (н.у.). Определите углеводород, если известно, что он имеет неразветвленное строение.

9. При добавлении какого газа к смеси равных объемов пропана и пентана ее относительная плотность по кислороду увеличится; уменьшится?

10. Приведите формулу простого газообразного вещества, имеющего такую же плотность по воздуху, как простейший алкен.

11. Составьте структурные формулы и назовите все углеводороды, содержащие 32е в молекуле 5 изомеров).

Конспект: «Типы химических реакций в органической химии»

Реакции органических веществ можно формально разделить на четыре основных типа: замещения, присоединения, отщепления (элиминирования) и перегруппировки (изомеризации). Очевидно, что все многообразие реакций органических соединений невозможно свести в рамки предложенной классификации (например, реакции горения). Однако такая классификация поможет установить аналогии с уже знакомыми вам из курса неорганической химии классификациями реакций, протекающих между неорганическими веществами.

Как правило, основное органическое соединение, участвующее в реакции, называют субстратом, а другой компонент реакции условно рассматривают как реагент.

Реакции замещения

Реакции, в результате которых осуществляется замена одного атома или группы атомов в исходной молекуле (субстрате) на другие атомы или группы атомов, называются реакциями замещения.

В реакции замещения вступают предельные и ароматические соединения, такие, как, например, алканы, циклоалканы или арены.

Приведем примеры таких реакций.

Под действием света атомы водорода в молекуле метана способны замещаться на атомы галогена, например на атомы хлора:

СН4 + Сl2→ СН3Сl + НСl

Другим примером замещения водорода на галоген является превращение бензола в бромбензол:

При этой форме записи реагенты, катализатор, условия проведения реакции записывают над стрелкой, а неорганические продукты реакции - под ней.

Реакции присоединения

Реакции, в результате которых две или более молекул реагирующих веществ соединяются в одну, называют реакциями присоединения.

В реакции присоединения вступают ненасыщенные соединения, такие, как, например, алкены или алкины. В зависимости от того, какая молекула выступает в качестве реагента, различают гидрирование (или восстановление), галогенирование, гидрогалогенирование, гидратацию и другие реакции присоединения. Каждая из них требует определенных условий.

1 . Гидрирование - реакция присоединения молекулы водорода по кратной связи:

СН3-СН = СН2 + Н2 → СН3-СН2-СН3

пропен пропан

2 . Гидрогалогенирование - реакция присоединения гало-геноводорода (например, гидрохлорирование):

СН2=СН2 + НСl → СН3-СН2-Сl

этен хлорэтан

3 . Галогенирование - реакция присоединения галогена (например, хлорирование):

СН2=СН2 + Сl2 → СН2Сl-СН2Сl

этен 1,2-дихлорэтан

4 . Полимеризация - особый тип реакций присоединения, в ходе которых молекулы вещества с небольшой молекулярной массой соединяются друг с другом с образованием молекул вещества с очень высокой молекулярной массой - макромолекул.

Реакции полимеризации - это процессы соединения множества молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера.

Примером реакции полимеризации может служить получение полиэтилена из этилена (этена) под действием ультрафиолетового излучения и радикального инициатора полимеризации R.

Типы химических реакций в органической химии

Реакции отщепления (элиминирования)

Реакции, в результате которых из молекулы исходного соединения образуются молекулы нескольких новых веществ, называют реакциями отщепления или элиминирования.

Примерами таких реакций может служить получение этилена из различных органических веществ.

Типы химических реакций в органической химии

Особое значение среди реакций отщепления имеет реакция термического расщепления углеводородов, на котором основан крекинг (англ. to crack - расщеплять) алканов - важнейший технологический процесс:

В большинстве случаев отщепление малой молекулы от молекулы исходного вещества приводит к образованию дополнительной п-связи между атомами. Реакции элиминирования протекают в определенных условиях и с определенными реагентами. Приведенные уравнения отражают лишь конечный результат этих превращений.

Реакции изомеризации

Реакции, в результате которых из молекул одного вещества образуются молекулы, других веществ того же качественного и количественного состава, т. е. с той же молекулярной формулой, называют реакциями изомеризации.

Примером такой реакции является изомеризация углеродного скелета алканов линейного строения в разветвленные, которая происходит на хлориде алюминия при высокой температуре:

Типы химических реакций в органической химии

1 . К какому типу реакций относится:

а) получение хлорметана из метана;

б) получение бромбензола из бензола;

в) получение хлорэтана из этилена;

г) получение этилена из этанола;

д) превращение бутана в изобутан;

е) дегидрирование этана;

ж) превращение бромэтана в этанол?

2 . Какие реакции характерны для: а) алканов; б) алкенов? Приведите примеры реакций.

3 . В чем особенности реакций изомеризации? Что их объединяет с реакциями получения аллотропных модификаций одного химического элемента? Приведите примеры.

4. В каких реакциях (присоединение, замещение, элиминирование, изомеризация) молекулярная масса исходного соединения:

а) увеличивается;

б) уменьшается;

в) не изменяется;

г) в зависимости от реагента увеличивается или уменьшается?