Цианобактерии: первое семя космической колонизации. Цианобактерии совмещают в одной клетке фотосинтез и фиксацию атмосферного азота

Бактерии - первые организмы, населившие нашу планету. Это мельчайшие прокариотические организмы, имеющие клеточное строение. Размеры бактерий колеблются от нескольких десятых микрона до 10-13 мкм. Они содержатся в воздухе (на высоте до 40 000 м), почве, воде, снегах полярных областей и горячих источниках с температурой около 90 °С. Особенно много их в почве - от 200-500 млн до 2 млрд и более особей в 1 г, в зависимости от типа почв.

По форме и особенностям объединения клеток различают несколько морфологических групп бактерий: шаровидные, называемые кокками, прямые палочковидные - бациллы, изогнутые - вибрионы, спирально изогнутые - спириллы. Кокки, сцепленные попарно, получили название - диплококки , соединенные в виде цепочки - стрептококки , в виде гроздей - стафилококки и др. Реже встречаются нитчатые формы.

Некоторые бактерии имеют органоиды движения - жгутики (от 1 до 50), которые состоят из особого белка - флагеллина. У ряда бактерий они расположены на одном конце клетки, у других - на двух или по всей поверхности. Способ расположения жгутиков является одним из признаков при классификации подвижных бактерий.

Тонкая и эластичная клеточная оболочка, в состав которой входит муреин, придает бактериальной клетке определенную форму, защищает ее содержимое от воздействия неблагоприятных факторов внешней среды и выполняет ряд других функций. Многие виды бактерий окружены слизистой капсулой.

Плазматическая мембрана способна образовывать выпячивания внутрь цитоплазмы, называемые мезосомами . На мембранах мезосом располагаются окислительно-восстановительные ферменты, а у фотосинтезирующих бактерий - и соответствующие пигменты, благодаря чему мезосомы способны выполнять функции митохондрий, хлоропластов и других органелл.

B центральной части клетки находится одна кольцевая молекула ДНК - геном, состоящий примерно из 5 млн пар нуклеотидов. Многие бактерии имеют мелкие кольцевые молекулы ДНК, называемые плазмидами. Митохондрии, хлоропласты, эндоплазматический ретикулум, аппарат Гольджи и другие мембранные структуры, характерные для всех эукариотических клеток у бактерий отсутствуют. Однако в цитоплазме имеется до 20 тыс. мелких рибосом.

У некоторых лишенных жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли . Регулируя количество газов в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на ее поверхность, а почвенные - передвигаться в капиллярах почвы. Запасные вещества бактериальной клетки - полисахариды (крахмал, гликоген), жиры, полифосфаты, сера.

Бактерии бесцветны (в их цитоплазме нет пигментов ), за исключением зеленых и пурпурных серных.

Размножение бактерий происходит путем простого бинарного деления клетки. Этому предшествует самоудвоение (репликация) молекулы ДНК. Почкование встречается как исключение.

У некоторых бактерий обнаружены упрощенные формы полового процесса (например, у кишечной палочки). Половой процесс напоминает конъюгацию, при которой происходит передача генетического материала из одной клетки в другую при их непосредственном контакте. После этого клетки разъединяются. Количество особей в результате полового процесса остается прежним, но происходит обмен наследственным материалом, т. е. осуществляется генетическая рекомбинация.

Спорообразование свойственно только небольшой группе бактерий бациллам, клостридиуму. В виде спор бактерии переносят неблагоприятные условия. Они выдерживают длительное высыхание, нагревание свыше 100 °C и охлаждение почти до абсолютного нуля. В обычном же состоянии бактерии неустойчивы при высушивании, воздействии прямых солнечных лучей, повышении температуры до 65-80 °C и т. д. В благоприятных условиях споры набухают и прорастают.

К сапротрофам относится бактерия гниения и брожения. Первые расщепляют азотсодержащие, вторые - углеродсодержащие соединения. В обоих случаях выделяется энергия, необходимая для их жизнедеятельности.

Роль бактерий в биосфере достаточно велика. Благодаря их жизнедеятельности происходит разложение и минерализация органических веществ, отмерших растений и животных. Образовавшиеся при этом простые неорганические соединения (аммиак, сероводород, диоксид углерода и др.) вовлекаются в общий круговорот веществ. Бактерии, вместе с грибами и лишайниками, участвуют в начальных стадиях почвообразовательных процессов.

Особую роль в природе играют азотфиксирующие бактерии. Населяя почву, такие бактерии обогащают ее азотом, к ним относятся свободноживущий азотобактер и клубеньковые бактерии, поселяющиеся на корнях бобовых и мимозовых растений.

Бактерии играют положительную роль в хозяйственной деятельности человека. Молочнокислые бактерии используются в приготовлении разнообразных пищевых продуктов из молока: сметаны, простокваши, кефира, масла, сыра.

Патогенные бактерии - возбудители опасных болезней у человека и животных: чумы, туляремии, сибирской язвы, пневмонии, дизентерии, туберкулеза и др.

Поражают бактерий я растения, вызывая у них так называемые бактериозы (пятнистость, увядание, ожоги, мокрые гнили, опухоли и др.).

Сапротрофные бактерии играют не только положительную роль, обеспечивая круговорот веществ в природе, но и отрицательную, вызывая гниение продуктов питания.

Широко распространенными методами борьбы с гнилостными бактериями являются: высушивание плодов, грибов, мяса, рыбы, зерна; их охлаждение и замораживание в холодильниках и ледниках; маринование продуктов в уксусной кислоте; высокая концентрация сахара, например, при изготовлении варенья, что вызывает плазмолиз в клетках бактерий и нарушает их жизнедеятельность; засолка.

Для уничтожения вегетативных форм бактерий и сохранения молока, вина, фруктовых соков и других продуктов применяется метод пастеризации - нагревание до 65 °С в течение 10-20 мин., а для освобождения среды от спорообразующих бактерий наибольший эффект дает метод стерилизации - кипячение при повышенном давлении в автоклавах. В медицине, пищевой промышленности, сельском хозяйстве используют метод дезинфекции (обработка йодом, перекисью водорода, борной кислотой и т. д.).

Цианобактерии (сине-зеленые водоросли). Они представляют собой древнейшую, уникальную группу организмов. Многие свойства цианобактерий (фиксация азота, прижизненные выделения органических веществ и др.) определяют их чрезвычайно важную роль в биосфере. Отдел включает одноклеточные, колониальные и многоклеточные (нитчатые) организмы различной морфологической структуры: от микроскопических до видимых простым глазом. В цитоплазме расположены фотосинтезирующие ламмедлярные структуры и пигменты: хлорофилл α, каротинонды, фикобилины, пигменты, отсутствующие у других фотосинтетиков. Благодаря разнообразию пигментов цианобактерии способны к поглощению света различных длин волн.

Размножаются цианобактерии бесполым путем (одноклеточные -делением клеток, колониальные и нитчатые - распадением на отдельные участки, способные прорастать в новые организмы). Половой процесс и подвижные жгутиковые формы и стадии не выявлены.

Цианобактерии распространены в пресных и соленых водах, на поверхности почвы, на скалах, в горячих источниках, входят в состав лишайников. Они обогащают почву органикой и азотом, являются кормом для зоопланктона и рыб, могут использоваться для получения ряда ценных веществ, продуцируемых ими в процессе жизнедеятельности (аминокислоты, витамин B 12 , пигменты и др.). Некоторые - носток, спирулина - могут применяться в пищу. В период массового размножения цианобактерий в водоемах (так называемого «цветения воды») происходит процесс их гниения: вода приобретает неприятный запах и становится непригодной для питья; наблюдается массовая гибель рыбы; на поверхности водоема образуется маслянистая грязно-зеленая пленка, состоящая из отмерших цианобактерий.

Читать далее

Цианобактерии занимают особое место среди бактерий. Они представлены одноклеточными, колониальными и нитчатыми формами, содержащими хло-рофилл и способными осуществлять фотосинтез. Циано-бактерии создают запас органических веществ в почве и воде, который служит кормовой базой для рыб и других мелких животных. Во время массового размножения цианобакте-рии вызывают цветение воды.

Цианобактерии в основном населяют пресноводные водое-мы, некоторые живут на влажной почве, в основании стволов деревьев. Небольшое количество видов обитает в морях. Не-которые приспособились жить в очень неблагоприятных усло-виях: в горячих источниках, замерзших озерах Антарктики.

Цианобактерии содержат зеленый пигмент хлорофилл, а также пигменты синего, красного и желтого цветов, участву-ющие в поглощении света. Сочетание пигментов дает в боль-шинстве случаев сине-зеленую окраску (отсюда название). Но некоторые из них желтые, черные или красные. Благодаря окраске цианобактерии придают среде, где они обитают, опре-деленный цвет, особенно при массовом размножении. Крас-ное море получило свое название от красных цианобактерий.

Цианобактерии играют важную роль в природе. Вместе с другими бактериями они обогащают почву органически-ми веществами и азотом, а водоемы и воздух — кислородом. Материал с сайта

Многие представители цианобактерий способны фикси-ровать атмосферный азот. В Азии за счет азотфиксирующих цианобактерий подолгу выращивают рис на одном и том же участке без применения удобрений.

Благодаря своей способности фиксировать атмосферный азот цианобактерии могут заселять голые поверхности скал и бедные почвы. Морские виды циано-бактерий фиксируют около четверти всего азота, который поглощается мо-рем из воздуха.

Водные формы бактерий служат кормом для мелких зверей и рыб. Некоторые цианобактерии используются в каче-стве «поставщиков» ценных для человека веществ — бел-ков, углеводов, жиров, витаминов , пигментов. Отдельные виды цианобактерий используются в пищу. Например, носток сливовидный (рис. 25) потребляют в Китае и Японии, а спирулину (рис. 26) — в районе озера Чад в Африке. Из спирулины получают пищевой белок, который используют как дополнение к пище.

Вот график, который показывает уровень кислорода в атмосфере Земли за последние 4 миллиарда лет:

Накопление O2 в атмосфере Земли. Источник: Wikipedia

Пояснение к рисунку:
Зелёный график - нижняя оценка уровня кислорода, красный - верхняя оценка.
1 . (3,85–2,45 млрд лет назад) - Кислород не генерировался
2 . (2,45–1,85 млрд лет назад) Кислород генерировался, но поглощался океаном и породами морского дна
3 . (1,85–0,85 млрд лет назад) Кислород выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя
4 . (0,85–0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление кислорода в атмосфере
5 . (0,54 млрд лет назад - по настоящее время) современный период, содержание кислорода в атмосфере стабилизировалось

Как вы видите, еще 2,5 млрд лет назад в атмосфере Земли практически не было кислорода. Затем уровень кислорода в атмосфере резко увеличился. Что привело к такому росту? Цианобактерии !

Цианобактерии и их уникальная история

Цианобактерии , называемые также как синезелёные водоросли , или оксифотобактерии , или цианопрокариоты , или цианеи  - это одноклеточные бактерии, которые получают энергию от фотосинтеза . Считается, что они являются первым видом на Земле, который развил способности фотосинтеза. Генерация кислорода в качестве побочного продукта фотосинтеза в конечном итоге привела к распространению многоклеточных организмов и, следовательно, к появлению животной жизни на Земле. Более того, цианобактерии - единственный вид в истории нашей планеты, который начал использовать фотосинтез - все растения и водоросли получили эту способность от них.

Большое цветение цианобактерий в озере Атитлан в Гватемале, Центральная Америка. Вид из космоса. Источник: NASA

Выжившие за миллиарды лет и имеющие широкое генетическое разнообразие, цианобактерии встречаются практически везде, будь то на суше или в воде. Они могут цвести в океанской воде или выживать в сухих пустынях. Некоторые виды цианобактерий даже прижились в антарктических породах.

Цианобактерии являются экстремофилами , что означает, что они способны выживать в экстремальных условиях. Цианобактерии даже выживали за пределами Международной космической станции (МКС) в течение 16 месяцев .

Цианобактерии были размещены в лотках за пределами МКС, где они подвергались экстремальным уровням радиации и колебаниям температуры. Они не только выжили в течение 16 месяцев, но и хорошо адаптировались к холоду вакуума.

Микроорганизмы, установленные на лотках вне МКС, подвергались воздействию суровой космической среды в течение 16 месяцев. Источник: Farunhofer.de

Цианобактерии были создателями земной атмосферы, теперь они могут стать архитекторами космической цивилизации.

Уникальные свойства цианобактерий в сочетании с их экстремофильной природой вызвали интересные идеи для их применения в исследовании космоса.

Как цианобактерии могут использоваться для космических поселений

Полезные применения цианобактерий в освоении космоса охватывают широкий диапазон:

  1. Источник энергии : в процессе фотосинтеза цианобактерии вытесняют свободные электроны высокой энергии в окружающую среду, тем самым вырабатывая электричество от солнечного света. В настоящее время ведутся исследования способов использования этого электричества путем разработки внутренних путей фотосинтеза цианобактерий. Это может обеспечить чистый, надежный и эффективный источник энергии для небольших применений в космических полетах, где другие источники не являются жизнеспособными.
  2. Источник кислорода: это идея с использованием цианобактерий для генерирования кислорода в атмосфере. Диоксид углерода (углекислый газ) составляет 96% атмосферы Марса. Мы, люди, нуждаемся в кислороде, чтобы выжить, и цианобактерии могут превратить достаточное количество углекислого газа в необходимый для дыхания кислород.

3. Сельское хозяйство : виды цианобактерий под названием Microcoleus vaginatus сохраняют воду в почве и предотвращают эрозию. Это потенциально делает их очень полезными для сельского хозяйства на инопланетных почвах, где вода не будет легко доступна.

Исследования Lab2Moon

Любые известные виды цианобактерий могут быть использованы только в том случае, если они смогут надежно работать во враждебных условиях космического пространства. Хотя цианобактерии были тщательно протестированы в суровых условиях в нескольких экспериментальных установках на Земле, космическая среда гораздо более враждебна. Поэтому, следующий шаг - увидеть, как они реагируют на экстремальные космические среды. Это и есть цель трех экспериментов Lab2Moon на борту посадочного модуля TeamIndus Moon .

№ 1: Space4Life - Разработка радиационного щита с использованием цианобактерий

Электроника и люди на борту космического корабля должны быть надежно защищены от разрушительной радиации и космических лучей космического пространства. Стандартным материалом для достижения этого традиционно был свинец. Тем не менее, ученые, стоящие за

Международное научное название

Cyanobacteria
(ex Stanier 1974) Cavalier-Smith 2002

Синонимы
  • Cyanophyta
Дочерние таксоны

Эволюционное и систематическое положение

Цианобактерии наиболее близки к древнейшим микроорганизмам, остатки которых (строматолиты , возраст более 3,5 млрд лет) обнаружены на Земле. Это единственные бактерии, способные к оксигенному фотосинтезу . Цианобактерии относятся к числу наиболее сложно организованных и морфологически дифференцированных прокариотных микроорганизмов. Предки цианобактерий рассматриваются в теории эндосимбиогенеза как наиболее вероятные предки хроматофоров красных водорослей . Внесистематическая группировка под условным названием «прохлорофиты» согласно этой теории имеет общих предков с хлоропластами прочих водорослей и высших растений.

Цианобактерии являются объектом исследования как альгологов (как организмы, физиологически схожие с эукариотическими водорослями), так и бактериологов (как прокариоты). Сравнительно крупные размеры клеток и сходство с водорослями было причиной их рассмотрения ранее в составе растений («синезелёные водоросли»). За это время было альгологически описано более 1000 видов в почти 175 родах. Бактериологическими методами в настоящее время подтверждено существование не более 400 видов. Биохимическое , молекулярно-генетическое и филогенетическое сходство цианобактерий с остальными бактериями в настоящее время подтверждено солидным корпусом доказательств.

Жизненные формы и экология

В морфологическом отношении цианопрокариоты - разнообразная и полиморфная группа. Общие черты их морфологии заключаются только в отсутствии жгутиков и наличии клеточной стенки (гликокаликс , состоящий из пептидогликана). Поверх слоя пептидогликана толщиной 2-200 нм имеют наружную мембрану. Ширина или диаметр клеток варьируется от 0,5 мкм до 100 мкм. Цианобактерии - одноклеточные , нитчатые и колониальные микроорганизмы. Отличаются выдающейся способностью адаптировать состав фотосинтетических пигментов к спектральному составу света, так что цвет варьируется от светло-зелёного до тёмно-синего. Некоторые азотфиксирующие цианобактерии способны к дифференцировке - формированию специализированных клеток: гетероцист и гормогониев . Гетероцисты выполняют функцию азотфиксации , в то время как другие клетки осуществляют фотосинтез.

Большинство цианобактерий - облигатные фототрофы , которые, однако способны к непродолжительному существованию за счёт расщепления накопленного на свету гликогена в окислительном пентозофосфатном цикле и в процессе гликолиза (достаточность одного гликолиза для поддержания жизнедеятельности подвергается сомнению).

Значение

Цианобактерии, по общепринятой версии, явились «творцами» современной кислородсодержащей атмосферы на Земле, что привело к «кислородной катастрофе » - глобальному изменению состава атмосферы Земли, произошедшему в самом начале протерозоя (около 2,4 млрд лет назад) которое привело к последующей перестройке биосферы и глобальному гуронскому оледенению .

В настоящее время, являясь значительной составляющей океанического планктона, цианобактерии стоят в начале большей части пищевых цепей и производят значительную часть кислорода (вклад точно не определён: наиболее вероятные оценки колеблются от 20 % до 40 %).

Цианобактерия Synechocystis стала первым фотосинтезирующим организмом, чей геном был полностью расшифрован.

В настоящее время цианобактерии служат важнейшими модельными объектами исследований в биологии. В Южной Америке и Китае бактерии родов спирулина и носток из-за недостатка других видов продовольствия используют в пищу: их высушивают, а затем готовят муку. Рассматривается возможное применение цианобактерий в создании замкнутых циклов жизнеобеспечения.

Классификация

Исторически существовало несколько систем классификации высших уровней цианобактерий.

  • Класс Cyanophyceae
    • Роды incertae sedis
    • Подкласс Gloeobacterophycidae
      • Порядок Gloeobacterales
      • Порядок Gloeomargaritales
    • Подкласс Nostocophycidae
      • Порядок Nostocales - Ностоковые
    • Подкласс Oscillatoriophycidae
      • Порядок

Цианобактерии

Сине-зелёные во́доросли, цианобакте́рии (лат. Cyanobacteria, от греч. κυανός — сине-зелёный) — значительная группа крупных грамотрицательных эубактерий, способных к фотосинтезу, сопровождающемуся выделением кислорода.

Эволюционное положение и систематика

Цианобактерии наиболее близки к древнейшим микроорганизмам, остатки которых (строматолиты, возраст более 3,5 млрд лет) обнаружены на Земле. Единственные, наряду с прохлорофитами, бактерии, способные к оксигенному фотосинтезу, предки цианобактерий рассматриваются в теории эндосимбиогенеза как наиболее вероятные предки хроматофоров красных водорослей (прохлорофиты согласно этой теории имеют общих предков с хлоропластами прочих водорослей и высших растений).

Сравнительно крупные размеры клеток и физиологическое сходство с водорослями было причиной их рассмотрения ранее в составе водорослей («синезеленые водоросли», «цианеи»). За это время было альгологически описано более 1000 видов в почти 175 родах. Бактериологическими методами в настоящее время подтверждено существование не более 400 штаммов. Биохимическое, молекулярно-генетическое и филогенетическое сходство цианобактерий с остальными бактериями в настоящее время подтверждено солидным корпусом доказательств, однако до сих пор некоторые ботаники, отдавая дань традиции, склонны относить цианобактерии к водорослям.

Жизненные формы и экология

Цианобактерии — одноклеточные, нитчатые и колониальные микроорганизмы. Средний размер клеток 2 мкм. Отличаются выдающейся способностью адаптировать состав фотосинтетических пигментов к спектральному составу света, так что цвет варьирует от светло-зелёного до темно-синего. Некоторые высшие азотфиксирующие цианобактерии (Nostocales) способны к дифференцировке — формированию специализированных клеток: гетероцист и гормогониев.

Морские и пресноводные, почвенные виды, участники симбиозов (например, в лишайнике). Составляют значительную долю океанического фитопланктона. Способны к формированию толстых бактериальных матов. Некоторые виды токсичны (наиболее изучен токсин микроцистин, продуцируемый, например, Microcystis aeruginosa) и условно-патогенны (Anabaena sp.). Главные участники цветения воды, вызывают массовые заморы рыбы и отравления животных и людей, например, при цветении воды в водохранилищах Украины. Уникальное экологическое положение обусловлено сочетанием двух трудносочетаемых способностей: к фотосинтетической продукции кислорода и фиксации атмосферного азота (у 2/3 изученных видов).

Деление бинарное в одной или нескольких плоскостях, множественное деление. Жизненный цикл у одноклеточных форм при оптимальных условиях роста — 6—12 часов.

Биохимические особенности и физиология

Цианобактерии обладают полноценным фотосинтетическим аппаратом, характерным для кислородвыделяющих фотосинтетиков. Фотосинтетическая электронтранспортная цепь включает фотосистему (ФС) II, b6f-цитохромный комплекс и ФСI. Конечным акцептором электронов служит ферредоксин, донором электронов — вода, расщепляемая в системе окисления воды, аналогичной таковой высших растений. Светсобирающие комплексы представлены особыми пигментами — фикобилинами, собранными (как и у красных водорослей) в фикобилисомы. При отключении ФСII способны к использованию других, нежели вода, экзогенных доноров электронов: восстановленных соединений серы, органических соединений в рамках циклического переноса электронов с участием ФСI. Однако эффективность такого пути фотосинтеза невелика, и он используется преимущественно для переживания неблагоприятных условий.

Цианобактерии отличает чрезвычайно развитая система внутриклеточных впячиваний цитоплазматической мембраны (ЦПМ)—тилдакоидов; высказаны предположения о возможном существовании у них системы тилакоидов, не связанных с ЦПМ, что до сих пор считалось невозможным у прокариот. Накопленная в результате фотосинтеза энергия используется в темновых процессах фотосинтеза для производства органических веществ из атмосферного CO2.

Большинство цианобактерий — облигатные фототрофы, которые, однако способны к непродолжительному существованию за счёт расщепления накопленного на свету гликогена в окислительном пентозофосфатном цикле и в процессе гликолиза (достаточность одного гликолиза для поддержания жизнедеятельности подвергается сомнению). Цикл трикарбоновых кислот (ЦТК) не может участвовать в получении энергии из-за отсутствия α-кетоглутаратдегидрогеназы. «Разорванность» ЦТК, в частности, приводит к тому, что цианобактерии отличаются повышенным уровнем экспорта метаболитов в окружающую среду.

Азотфиксация обеспечивается ферментом нитрогеназой, которых отличается высокой чувствительностью к молекулярному кислороду. Поскольку кислород выделяется при фотосинтезе, в эволюции цианобактерий реализованы две стратегии: пространственного и временного разобщения этих процессов. У одноклеточных цианобактерий пик фотосинтетической активности наблюдается в светлое, а пик нитрогеназной активности — в тёмное время суток. Процесс регулируется генетически на уровне транскрипции; цианобактерии являются единственными прокариотами, у которых доказано существование циркадных ритмов (причём продолжительность суточного цикла может превышать продолжительность жизненного цикла!). У нитчатых цианобактерий процесс азотфиксации локализован в специализированных терминально дифференцированных клетках — гетероцистах, отличающихся толстыми покровами, которые препятствуют проникновению кислорода. При недостатке связанного азота в питательной среде в колонии насчитывается 5-15 % гетероцист. ФСII в гетероцистах редуцирована. Гетероцисты получают органические вещества от фотосинтезирующих членов колонии. Накопленный связанный азот накапливается в гранулах цианофицин или экспортируется в виде глутаминовой кислоты.

Систематика
Систематика цианобактерий разработана недостаточно. Выделяют пять порядков: порядки Chroococcales и Pleurocapsales объединяют одиночные или колониальные сравнительно простые формы, в порядки Oscillatoriales, Nostocales, Stigoneomatales входят нитчатые высокоорганизованные формы.

Значение Цианобактерии, по общепринятой версии, явились «творцами» современной кислородсодержащей атмосферы на Земле (согласно другой теории, кислород атмосферы имеет геологическое происхождение), что привело к первой глобальной экологической катастрофе в естественной истории и драматической смене биосферы. В настоящее время, являясь значительной составляющей океанического планктона, цианобактерии стоят в начале бо́льшей части пищевых цепей и производят большу́ю часть кислорода (вклад признается не всеми исследователями). Цианобактерия Synechocystis стала первым фотосинтезирующим организмом, чей геном был полностью расшифрован. В настоящее время цианобактерии служат важнейшими моделдьными объектами исследований в биологии. В Южной Америке и Китае бактерии родов Spirulina и Nostoc из-за недостатка других видов продовольствия используют в пищу, высушивая и приготовляя муку. Им приписывают целебные и оздоравливающие свойства, которые, однако, в настоящее время не нашли подтверждения. Рассматривается возможное применение цианобактерий в создании замкнутых циклов жизнеобеспечения, а также как массовой кормовой или пищевой добавки.