Увеличение кислородной емкости крови. Транспорт кислорода кровью

Соединения гемоглобина с газами.

Миоглобин.

Помощь при отравлении угарным газом.

Патологические соединения гемоглобина с кислородом.

При действии сильных окислителей Fe 2+ переходит в Fe 3+ - это прочное соединение метгемоглобин. При накоплении его в крови наступает смерть.

Соединение гемоглобина с СО 2

называется карбгемоглобин (HbCO 2). В артериальной крови его содержится 52об% или 520 мл/л. В венозной – 580 об% или 580 мл/л.

Патологическое соединение гемоглобина с СО называется карбоксигемоглобин (HbCO). Присутствие в воздухе даже 0,1% СО превращает 80% гемоглобина в карбоксигемоглобин. Соединение стойкое. При обычных условиях распадается очень медленно.

1)обеспечить доступ кислорода

2) вдыхание чистого кислорода увеличивает скорость распада карбоксигемоглобина в 20 раз.

Это гемоглобин, содержащийся в мышцах и миокарде. Обеспечивает потребности в кислороде при сокращении с прекращением кровотока (статические напряжение скелетных мышц).

Соединения гемоглобина с кислородом называется оксигемоглобином (HbO 2), обеспечивает алый цвет артериальной крови.

Это количество кислорода, которое может связать 100г крови. Известно, что один г. гемоглобина связывает 1,34 мл О 2 . КЕК = Hb∙1,34 . Для артериальной крови КЕК = 18 – 20 об% или 180 – 200 мл/л крови.

Кислородная емкость зависит от:

1) количества гемоглобина.

2) температуры крови (при нагревании крови снижается)

3) рН (при закислении снижается)

3.Рефлекторные влияния на дыхание с рецепторов легких, воздухоностных путей и дыхательных мышц. Хеморецепторы и их роль в регуляции дыхания(артериальные и центральные хеморецепторы).

Для нормальной работы дыхательных нейронов, правильного чередования вдоха – выдоха необходима импульсация:

1) с хеморецепторов центральных и периферических;

2) с механорецепторов:

а) ирритантных воздухоносных путей;

б) рецепторного растяжения легких.

3) с проприорецепторов дыхательных мышц.

Рефлексы с хеморецепторов.

Деятельность дыхательного центра, его инспираторных нейронов зависит в значительной степени от содержания в крови СО 2 , Н + , в меньшей степени от содержания О 2 . Эти факторы усиливают деятельность дыхательного центра, воздействуя на центральные и периферические хеморецепторы.

Периферические или артериальные – в дуге аорты и каротидных синусах возбуждаются через 3 – 5с.

Аортальные при снижении РО 2 до 80 – 20мм рт ст., вызывают учащение сердцебиений, гипоксический стимул.

Каротидные – при повышении СО 2 (гиперкапнический стимул) и Н + (ацидотический стимул) – обеспечивают увеличение частоты дыхания.



Центральные (медуллярные) рецепторы обнаружены в продолговатом мозге. Реагируют на Н + и концентрацию СО 2 во внеклеточной жидкости. Возбуждаются позже периферических, оказывают более сильное и длительное влияние на ДЦ, чем периферические каротидные.

> СО 2 , > Н 2 увеличивают легочную вентиляцию за счет увеличения ЧД и ДО.

Рефлексы с механорецепторов .

Механорецепторы дыхательной системы выполняют 2 функции:

1) регуляция глубины и длительности вдоха, смена его выдохом;

2) обеспечивают защитные дыхательные рефлексы.

Роль рецепторов растяжения легких.

Они локализованы в гладкомышечном слое стенок трахеобронхиального дерева. Возбуждаются при растяжении дыхательных путей и легких при вдохе.

Афферентные сигналы идут по волокнам блуждающего нерва.

Итог возбуждения – торможение вдоха и его смена выдохом (рефлекс Геринга – Брейера).

Выключение информации с рецепторов растяжения приводит к углубленным, затянутым вдохам, как и при нарушении связей с пневмотоксическим центром. Если прекратить связь с рецепторами растяжения и ПТЦ, то дыхание останавливается на вдохе, иногда прерываясь короткими экспирациями – апнейзис.

Ирритантные рецепторы (механо и хемочувствительные) расположены в эпителиальном и субэпителиальном слоях стенок воздухоносных путей.

Ирритационные рецепторы возбуждаются:

1) резким изменением объема легких. Участвуют в формировании рефлекса на спадение бронхов – бронхокострикцию ;

2) возбуждаются при неравномерной вентиляции легких – обеспечивает «вздохи» 3 раза в час для улучшения вентиляции и расправления легких;

3) возбуждаются при снижении растяжимости легочной ткани при бронхиальной астме, отеке легких, пневмотораксе, застое крови в малом круге кровообращения, вызывая характерную одышку и чувство жжения, першения в горле.

4) возбуждаются пылевыми частицами и накапливающейся слизью – защитные рефлексы. Если ирритантные рецепторы трахеи – кашель; бронхов увеличивается частота дыхания.

5) возбуждаются хеморецепторы при действии паров едких веществ (аммиак, эфир, табачный дым и т. д.).

6) есть J – рецепторы в интерстиции легких, реагируют на гистамин, простагландин – в ответ частое, поверхностное дыхание (тахипное).

Рефлексы с проприорецепторов дыхательных мышц .

В диафрагме их мало. Большое значение имеют проприорецепторы межреберных мышц и вспомогательные дыхательные мышцы:

1) возбуждаются если вдох или выдох затруднен, мышцы растянуты, в результате этого сокращение мышцы увеличивается (проприоцептивный рефлекс). Таким образом, автоматически регулируется сила сокращения дыхательных мышц при сужении бронхов, спазме голосовой щели, набухании слизистой дыхательных путей.

2) проприорецепторы дыхательных мышц возбуждаются при возбуждении γ – мотонейрона – например, произвольная регуляция дыхания.

Оглавление темы "Вентиляция легких. Перфузия легких кровью.":
1. Вентиляция легких. Вентиляция кровью легких. Физиологическое мертвое пространство. Альвеолярная вентиляция.
2. Перфузия легких кровью. Влияние гравитации на вентиляцию легких. Влияние гравитации на перфузию легких кровью.
3. Коэффициент вентиляционно-перфузионных отношений в легких. Газообмен в легких.
4. Состав альвеолярного воздуха. Газовый состав альвеолярного воздуха.
5. Напряжение газов в крови капилляров легких. Скорость диффузии кислорода и углекислого газа в легких. Уравнение Фика.

7. Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.
8. Углекислый газ. Транспорт углекислого газа.
9. Роль эритроцитов в транспорте углекислого газа. Эффект Холдена..
10. Регуляция дыхания. Регуляция вентиляции легких.

Кровообращение выполняет одну из важнейших функций переноса кислорода от легких к тканям, а углекислого газа - от тканей к легким. Потребление кислорода клетками тканей может изменяться в значительных пределах, например при переходе от состояния покоя к физической нагрузке и наоборот. В связи с этим кровь должна обладать большими резервами, необходимыми для увеличения ее способности переносить кислород от легких к тканям, а углекислый газ в обратном направлении.

Транспорт кислорода.

При 37 С растворимость 02 в жидкости составляет 0,225 мл л-1 кПа-1 (0,03 мл/л/мм рт. ст.). В условиях нормального парциального давления кислорода в альвеолярном воздухе, т. е. 13,3 кПа или 100 мм рт.ст., 1 л плазмы крови может переносить только 3 мл 02, что недостаточно для жизнедеятельности организма в целом. В покое в организме человека за минуту потребляется примерно 250 мл кислорода. Чтобы тканям получить такое количество кислорода в физически растворенном состоянии, сердце должно перекачивать за минуту огромное количество крови. В эволюции живых существ проблема транспорта кислорода была более эффективно решена за счет обратимой химической реакции с гемоглобином эритроцитов. Кислород переносится кровью от легких к тканям организма молекулами гемоглобина, которые содержатся в эритроцитах.

Гемоглобин способен захватывать кислород из альвеолярного воздуха (соединение называется ок-сигемоглобином) и освобождать необходимое количество кислорода в тканях. Особенностью химической реакции кислорода с гемоглобином является то, что количество связанного кислорода ограничено количеством молекул гемоглобина в эритроцитах крови. Молекула гемоглобина имеет 4 места связывания с кислородом, которые взаимодействуют таким образом, что зависимость между парциальным давлением кислорода и количеством переносимого кислорода с кровью имеет S-образную форму, которая носит название кривой насыщения или диссоциации оксигемоглобина (рис. 10.18). При парциальном давлении кислорода 10 мм рт. ст. насыщение гемоглобина кислородом составляет примерно 10 %, а при Р02 30 мм рт. ст. - 50-60 %. При дальнейшем увеличении парциального давления кислорода от 40 мм рт. ст. до 60 мм рт. ст. происходит уменьшение крутизны кривой диссоциации оксигемоглобина и процент его насыщения кислородом возрастает в диапазоне от 70-75 до 90 % соответственно. Затем кривая диссоциации оксигемоглобина начинает занимать практически горизонтальное положение, поскольку увеличение парциального давления кислорода с 60 до 80 мм рт. ст. вызывает прирост насыщения гемоглобина кислородом на 6 %. В диапазоне от 80 до 100 мм рт. ст. процент образования оксигемоглобина составляет порядка 2. В результате кривая диссоциации оксигемоглобина переходит в горизонтальную линию и процент насыщения гемоглобина кислородом достигает предела, т. е. 100. Насыщение гемоглобина кислородом под влиянием Р02 характеризует своеобразный молекулярный «аппетит» этого соединения к кислороду.

Значительная крутизна кривой насыщения гемоглобина кислородом в диапазоне парциального давления от 20 до 40 мм рт. ст. способствует тому, что в ткани организма значительное количество кислорода может диффундировать из крови в условиях фадиента его парциального давления между кровью и клетками тканей (не менее 20 мм рт. ст.). Незначительный процент насыщения гемоглобина кислородом в диапазоне его парциального давления от 80 до 100 мм рт. ст. способствует тому, что человек без риска снижения насыщения артериальной крови кислородом может перемещаться в диапазоне высот над уровнем моря до 2000 м.


Рис. 10.18. Кривая диссоциации оксигемоглобина . Пределы колебания кривой при РС02 = 40 мм рт. ст. (артериальная кровь) и РС02 = 46 мм рт. ст. (венозная кровь) показывают изменение сродства гемоглобина к кислороду (эффект Ходена ).

Общие запасы кислорода в организме обусловлены его количеством, находящимся в связанном состоянии с ионами Fe2+ в составе органических молекул гемоглобина эритроцитов и миоглобина мышечных клеток.

Один грамм гемоглобина связывает 1,34 мл 02. Поэтому в норме при концентрации гемоглобина 150 г/л каждые 100 мл крови могут переносить 20,0 мл 02.

Количество 02, которое может связаться с гемоглобином эритроцитов крови при насыщении 100 % его количества, называется кислородной емкостью гемоглобина . Другим показателем дыхательной функции крови является содержание 02 в крови (кислородная емкость крови ), которое отражает его истинное количество, как связанного с гемоглобином, так и физически растворенного в плазме. Поскольку в норме артериальная кровь насыщена кислородом на 97 %, то в 100 мл артериальной крови содержится примерно 19,4 мл 02.

Количество кислорода, которое может связать гемоглобин при условии его полного насыщения, называется кислородной емкостью крови (КЕК)

    1грамм Нв связывает 1,39 мл О2

Коэффициент утилизации кислорода

    Коэффициент утилизации кислорода это количество кислорода отданного при прохождении крови через тканевые капилляры, отнесенное к кислородной емкости крови.

    Напряжение кислорода в артериальной крови капилляров равно 100 мм рт. ст.

    На мембранах клеток, находящихся между капиллярами 20 мм рт. ст.

    В митохондриях – 0,5 мм рт. ст.

Дыхательный коэффициент

    Отношение образующегося в результате окисления СО2 к количеству потребляемого в организме кислорода называется дыхательным коэффициентом.

    В условиях покоя в организме за минуту потребляется в среднем 250 мл О2 и выделяется около 230 мл СО2.

    Из всего О2 вдыхаемого воздуха в кровь через аэрогематический барьер в легких поступает только 1/3.

    Главное значение имеют оптимальные отношения альвеолярной вентиляции к кровотоку

Газообмен и транспорт СО2

    Поступление СО2 в альвеолы легких из крови обеспечивается из следующих источников:

    Из СО 2 , растворенного в плазме крови (5-10%),

    Из гидрокарбонатов (80-90%).

    Из карбаминовых соединений эритроцитов (5-15%), которые способны диссоциировать

Физиологическая роль оксида азота

Оксид азота снижает выброс и продукцию стресс гормонов, способен ограничивать стрессорные повреждения организма.

Увеличение продукции NO, происходит при действии кратковременных или умеренных стрессоров, а снижение его образования выявлено в условиях длительных и повреждающих воздействий стресс факторов

Физиологические функции СО

1. Нейротрансмиссия

2.Расширение сосудов

3.Расслабление гладкой мускулатуры внутренних органов

4.Подавление агрегации тромбоцитов

5.Анти-пролиферативный эффект.

Физиологическое объяснение :

СО – тоническое влияние, т.к.:СО – долгоживущая молекула слабый сосудорасширяющий эффект.

NO – фазическое влияние, т.к.: NO – короткоживущая молекула сильный сосудорасширяющий эффект.

Лекция 18

Регуляция дыхания

Регуляция внешнего дыхания представляет собой системную реакцию организма связанную с изменением минутного объема дыхания(МОД) , а значит и минутного объема кровообращения (МОК) в различных условиях для обеспечения постоянства газового состава внутренней среды организма, а значит и гомеостаза в целом.

    Для нормального протекания процессов жизнедеятельности организма особенно важны содержание и баланс О2 и СО2 в артериальной крови.

    Это обеспечивается за счет установления в капиллярах легких газового равновесия (неравновесия), обеспечивающего процессы синхронного массопереноса кислорода и СО2 в легочном компартменте.

    Холдейн пришел к выводу, что основным фактором регуляции дыхания является напряжение углекислоты в артериальной крови.

    Его главный вывод о том, что повышение напряжения углекислоты в артериальной крови приводит к увеличению МОД, остался справедливым до настоящего времени.

Кислородная емкость крови - количество кислорода, одномоментно находящегося в связанном виде с гемоглобином в артериальной крови.

легкие снабжаются кровью от обоих кругов кровообращения. Но газообмен происходит только в капиллярах малого круга, в то время как сосуды большого круга кровообращения обеспечивают питание легочной ткани. В области капиллярного русла сосуды разных кругов могут анастомозировать между собой, обеспечивая необходимое перераспределение крови между кругами кровообращения. Сопротивляемость току крови в сосудах легких и давление в них меньше, чем в сосудах большого круга кровообращения, диаметр легочных сосудов больший, а длина их меньшая. Во время вдоха увеличивается приток крови в сосуды легких и вследствие их растяжимости они способны вмещать до 20-25% крови. Поэтому легкие при определенных условиях могут выполнять функцию депо крови. Стенки капилляров легких тонкие, что создает благоприятные условия для газообмена, но при патологии это может привести к их разрыву и легочному кровотечению. Резерв крови в легких имеет большое значение в случаях когда необходима срочная мобилизация дополнительного количества крови для поддержания необходимой величины сердечного выброса, например в начале интенсивной физической работы, когда другие механизмы регуляции кровообращения еще не включились.

Газообмен - это транскапиллярный обмен дыхательных газов (СО2 и О2). Осуществляется между венозной кровью и воздухом альвеол, в малом кругу кровообращения, и между артериальной кровью и тканями в большом кругу кровообращения.

Газообмен в капиллярах малого круга.

Значение рО2 и рСО2 в

В легких: Тканях:

рО2 = 103 mmHgpO2 = 40 mmHg

pCO2 = 40 mm Hg pCO2 = 46 mmHg

1. Разрушить соединения, в виде которых СО2 транспортируется в кровь и вывести их.

2. Оксигенировать кровь

1) HHbCO2 – диссоциирует по градиенту давления:

HHbCO2 àHHb + CO2

2) Чем больше Hb сбрасывает СО2, тем легче он связывается с О2 по градиенту давления:

HHb + O2 = HHbO2

В эритроците сейчас находятся следующие вещества:

KHCO3 иHHbO2, которые взаимодействуют друг с другом:

KHCO3 + HHbO2-àKHbO2 + H2CO3

Под действием карбоангидразы:

H2CO3 -àCO2 + H2O

К этому времени мы освободились от двух соединений, транспортируемых СО2 (HHbCO2 иKHCO3)

Нам осталось освободится от NaHCO3 находящийся в плазме крови.

В МКК Н2СО3 ферментативно расщепляется на H2OиCO2, а не спонтанно диссоциирует на Н+ и НСО3-

В малом кругу в крови практически нет иона бикарбоната, поэтому НСО3- дифундирует из плазмы крови в эритроците. В эритроците НСО3- связывается с протоном Н+ чуть –чуть подкисливая кровь образуется Н2СО3 – расщепляется на Н2О и СО2:

HCO3- + H+ àH2CO3 àH2O + CO2

Итак, все три соединения в виде которых СО2 транспортируется в МКК. Это:

KHCO3 – в эритроците

NaHCO3 – в плазме

HHbCO3 – в эритроците

Кислородная емкость крови _ это количество мл О2 транспортируется кровью

КЕК ограниченна содержанием Нb

Hb – 14,2% - количество грНb 100 ml

1 грHb может связываться с 1,34 мл О2 – коэффициент Хюффнера

КЕК = 1,34 * 14=19 об.%

Объемный % - количество мл газов, содержащихся в 100 мл крови.

  • Предыдущая
  • 1 of 3
  • Следующая

В этой части речь идет о переносе газов кровью: о значении физических факторов для переноса газов кровью, о роли давления газов в их переносе кровью, о кислородной емкости крови, о содержании газов в крови, о связывании кислорода кровью, о связывании углекислого газа кровью.

Перенос газов кровью.

Значение физических факторов для переноса газов кровью.

Растворение газов в жидкостях зависит от ряда факторов: от свойств самого газа, от свойств жидкости (концентрации в ней солей, ее температуры), от объема и давления газа над жидкостью.

Показателем растворимости газов служит коэффициент растворимости (или абсорбционный коэффициент). Его величина показывает тот объем газа, который растворяется в 1 см 3 жидкости при температуре 0 градусов Цельсия и давлении 760 мм рт.ст.

Коэффициент растворимости газа тем больше, чем ниже температура; он уменьшается с повышением температуры и при температуре кипения равен нулю (газ из раствора весь испаряется). Коэффициент растворимости в крови для кислорода равен 0,022, для азота - 0,011, для углекислоты - 0,511.

В состоянии растворения в артериальной крови содержится 0,25 мл О 2 , 2,69 мл СО 2 и 1,04 мл N.

Физическое растворение газов очень мало, а поэтому оно не имеет большого значения для их переноса кровью. Важным фактором переноса газов кровью является образование химических соединений с веществами плазмы крови и эритроцитов. Для установления химических связей и физического растворения газов важна величина давления газа над жидкостью.

Роль давления газов в их переносе кровью.

Поступление газа в жидкость зависит от его давления. Если над жидкостью находится смесь газов, то движение и растворение каждого из них зависят от его парциального давления. Парциальное давление можно рассчитать исходя из общего давления смеси газов и их процентного содержания.

Всю газовую смесь атмосферного воздуха принимают за 100%, он обладает давлением 760 мм рт.ст., а часть газа (О 2 - 20,95%) принимают за X. Отсюда: X=(760х20,95):100=159,22 мм рт.ст. При расчете парциального давления газов в альвеолярном воздухе необходимо учитывать, что он насыщен водяными парами, давление которых составляет 47 мм рт.ст. Следовательно, на долю газовой смеси, входящей в состав альвеолярного воздуха приходится давления не 760 мм рт.ст., а 760-47=713 мм рт.ст. Это давление принимается за 100%.

Отсюда легко вычислить, что парциальное давление О 2 , который содержится в альвеолярном воздухе в количестве 14,3%, будет равно: (713х14,3):100=102 мм рт.ст.

Соответственный расчет парциального давления СО 2 показывает, что оно равно 40 мм рт.ст.

Альвеолярный воздух контактирует с тонкими стенками легочных капилляров, по которым приходит к легким венозная кровь. Интенсивность обмена газов и направление их движения (из легких в кровь или из крови в легкие) зависят от парциального давления кислорода и углекислоты в газовой смеси в легких и в крови (давление газов в жидкостях называют их напряжением).

Напряжение кислорода в венозной крови равно 40 мм рт.ст., углекислоты - 46 мм рт.ст. Движение газов осуществляется от большего давления к меньшему. Следовательно. кислород будет поступать из легких (его парциальное давление в них равно 102 мм рт.ст.) в кровь (его напряжение в крови 400 мм рт.ст.) в альвеолярный воздух (давление 40 мм рт.ст.)

Кислородная емкость крови. Содержание газов в крови.

В крови кислород соединяется с гемоглобином и образует непрочное соединение - оксигемоглобин. Насыщение крови кислородом зависит от количества гемоглобина в крови. Максимальное количество кислорода, которое может поглотить 100 мл крови, называют кислородной емкостью крови. Известно, что в 100 г крови человека содержится 14% гемоглобина. Каждый грамм гемоглобина может связать 1,34 мл О 2 . Значит, 100 мл крови могут перенести 1,34х14%=19 мл (или 19 объемных процентов). Это и есть кислородная емкость крови.

Связывание кислорода кровью.

В артериальной крови 0,25 объемного процента О 2 находится в состоянии физического растворения в плазме, а остальные 18,75 объемного процента - в эритроцитах в связанном состоянии с гемоглобином в виде оксигемоглобина. Связь гемоглобина с кислородом зависит от величины напряжения газов: если оно увеличивается, гемоглобин присоединяет кислород и образуется оксигемоглобин (НВО 2). При уменьшении напряжения кислорода оксигемоглобин распадается и отдает кислород. Кривую, отражающую зависимость насыщения гемоглобина кислородом от напряжения последнего, называют кривой диссоциации оксигемоглобина. Даже при небольшом парциальном давлении кислорода (40 мм рт.ст.) с ним связываются 75-80% гемоглобина. При давлении 80-90 мм рт.ст. гемоглобин почти полностью насыщается кислородом. В альвеолярном воздухе парциальное давление кислорода равно 120 мм рт.ст., поэтому кровь в легких будет полностью насыщена кислородом.

При рассмотрении кривой диссоциации оксигемоглобина можно заметить, что при уменьшении парциального давления кислорода оксигемоглобин подвергается диссоциации и отдает кислород. При нулевом давлении кислорода оксигемоглобин может отдать весь соединенный с ним кислород.

Свойство гемоглобина - легко насыщаться кислородом, даже при небольших давлениях, и легко его отдавать - очень важно.

Благодаря легкой отдаче гемоглобином кислорода при снижении парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела.

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина.

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, так же как не происходит полной отдачи кислорода при снижении его парциального давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови.

Особое значение в связывании гемоглобина с кислородом имеет содержание СО 2 в крови. Чем больше содержится углекислоты в крови, тем меньше связывается гемоглобин с кислородом и тем быстрее происходит диссоциация оксигемоглобина. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении СО 2, равном 46 мм рт.ст. в венозной крови. Влияние СО 2 на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество СО 2 и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же, по мере выделения СО 2 из венозной крови в альвеолярный воздух. с уменьшением содержания СО 2 в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Связывание углекислого газа кровью.

В артериальной крови содержится 50-52% СО 2 , а в венозной на 5-6% больше - 55-58%. из них 2,5-2,7 объемного процента в состоянии физического растворения, а остальная часть СО 2 переносится в виде солей угольной кислоты: бикарбоната натрия (NaHCO 3) в плазме и бикарбоната калия (KHCO 3) - в эритроцитах. Часть углекислого газа (от 10 до 20 объемных процентов) может транспортироваться в виде соединений с аминогруппой гемоглобина - карбгемоглобина.

Из всего количества СО 2 большая его часть (2/3) переносится плазмой крови.

Одной из важнейших реакций, обеспечивающих транспорт СО 2 , является образование угольной кислоты из СО 2 и Н 2 О:

H 2 O+CO 2 ↔H 2 CO 3

Такая реакция в крови ускоряется приблизительно в 20 000 раз. Большая скорость этой реакции обеспечивается ферментом карбоангидразой. При увеличении содержания СО 2 в крови (что бывает в тканях) фермент способствует гидратации СО 2 и реакция идет в сторону образования Н 2 СО 3 . При уменьшении парциального напряжения СО 2 в крови (что имеет место в легких) фермент карбоангидраза способствует дегидратации Н 2 СО 3 и реакция идет в сторону образования СО 2 и Н 2 О. Это обеспечивает наиболее быструю отдачу СО 2 в альвеолярный воздух.

Связывание СО 2 кровью, так же как и кислорода, зависит от парциального давления. Можно построить кривые диссоциации углекислоты, отложив на оси абсцисс парциальное давление СО 2 , а на оси ординат - количество связанного углекислого газа в объемных процентах. Кривая показывает, что связывание СО 2 кровью увеличивается по мере возрастания его парциального давления.

При парциальном напряжении СО 2 , равном 40 мм рт.ст. (что соответствует его напряжению в артериальной крови), в крови содержится 52% углекислоты. При напряжении СО 2 , равном 46 мм рт.ст. (что соответствует напряжению в венозной крови), содержание СО 2 возрастает до 58%.

На связывание СО 2 кровью влияет присутствие оксигемоглобина в крови. Эту зависимость можно проследить при переходе артериальной крови в венозную. Сравнение нижней кривой и верхней НА РИСУНКЕ

показывает, что при превращении артериальной крови в венозную солями гемоглобина отдается кислород и тем самым облегчается ее насыщение углекислым газом. При этом содержание СО 2 в ней увеличивается на 6%: с 52% до 58%.

В сосудах легких образование оксигемоглобина способствует отдаче СО 2 , содержание которого при превращении венозной крови в артериальную уменьшается с 58 до 52 объемных процентов. В присутствии кислорода из крови удаляется весь СО 2 при его нулевом напряжении в окружающей среде. В присутствии азота, даже при нулевом напряжении СО 2 в окружающей среде, часть его остается связанным с кровью.