Условия равновесия твердого тела. Условия равновесия тел Равновесие тел условия равновесия виды равновесия
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Работа и мощность» из «Электронных уроков и тестов.
  2. Таблица «Условия равновесия».
  3. Призма наклоняющаяся с отвесом.
  4. Геометрические тела: цилиндр, куб, конус и т.д.
  5. Компьютер, мултимедиапроектор, интерактивная доска или экран.
  6. Презентация.

Ход урока

Сегодня на уроке мы узнаем, почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по часовой = ∑ M против часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)



Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности.

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22 .

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание : § 5456 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

Равновесие механической системы — это состояние, при котором все точки механической системы находятся в покое по отношению к рассматриваемой системе отсчета. Если система отсчета инерциальна, равновесие называется абсолютным , если неинерциальна — относительным .

Для нахождения условий равновесия абсолютно твердого тела необходимо мысленно разбить его на большое число достаточно малых элементов, каждый из которых можно представить материальной точкой. Все эти элементы взаимодействуют между собой — эти силы взаимодействия называются внутренними . Помимо этого на ряд точек тела могут действовать внешние силы.

Согласно второму закону Ньютона , чтобы ускорение точки равнялось нулю (а ускорение покоящейся точки равно нулю), геометрическая сумма сил, действующих на эту точку, должна быть равна нулю. Если тело находится в покое, значит, все его точки (элементы) также находятся в покое. Следовательно, для любой точки тела можно записать:

где — геометрическая сумма всех внешних и внутренних сил, действующих на i -й элемент тела.

Уравнение означает, что для равновесия тела необходимо и достаточно, чтобы геометрическая сумма всех сил, действующих на любой элемент этого тела, была равна нулю.

Из легко получить первое условие равновесия тела (системы тел). Для этого достаточно просуммировать уравнение по всем элементам тела:

.

Вторая сумма равна нулю согласно третьему закону Ньютона : векторная сумма всех внутренних сил системы равна нулю, т. к. любой внутренней силе соответствует сила, равная по модулю и противоположная по направлению.

Следовательно,

.

Первым условием равновесия твердого тела (системы тел) является равенство нулю геометрической суммы всех внешних сил, приложенных к телу.

Это условие является необходимым, но не достаточным. В этом легко убедиться, вспомнив о вращающем действии пары сил, геометрическая сумма которых тоже равна нулю.

Вторым условием равновесия твердого тела является равенство нулю суммы моментов всех внешних сил, действующих на тело, относительно любой оси.

Таким образом, условия равновесия твердого тела в случае произвольного числа внешних сил выглядят так:

.

Система сил наз.уравновешенной ,если под действием этой системы тело остается в покое.

Условия равновесия:
Первое условие равновесия твердого тела:
Для равновесия твердого тела необходимо, чтобы сумма внешних сил, приложенных к телу, была равна нулю.
Второе условие равновесия твердого тела:
При равновесии твердого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равно нулю.
Общее условие равновесия твердого тела :
Для равновесия твердого тела должны равняться нулю сумма внешних сил и сумма моментов сил, действующих на тело. Должны быть также равны нулю начальная скорость центра масс и угловая скорость вращения тела.

Теорема. Три силы уравновешивают твёрдое тело только в том случае, когда все они лежат в одной плоскости.

11. Плоская система сил – это силы, расположенные в одной плоскости.

Три формы уравнений равновесия для плоской системы:

Центр тяжести тела.

Центром тяжести тела конечных размеров называется точка, относительно которой сумма моментов сил тяжести всех частиц тела равна нулю. В этой точке приложена сила тяжести тела. Центр тяжести тела (или системы сил) обычно совпадает с центром масс тела (или системы сил).

Центр тяжести плоской фигуры:

Практический способ нахождения центра масс плоской фигуры : подве­сим тело в поле тяжести так, чтобы оно могло свободно поворачиваться вокруг точки подвеса O1 . В равновесии центр масс С находит­ся на одной вертикали с точкой подвеса (ниже ее), так как равен нулю

момент силы тяжести, которую можно считать приложенной в центре масс. Изменяя точку подвеса, таким же способом находим еще одну прямую О 2 С , проходящую через центр масс. Положение центра масс да­ется точкой их пересечения.

Скорость центра масс:

Импульс системы частиц равен произведению массы всей системы М=Σmi на скорость ее центра масс V :

Центр масс характеризует движении системы как целого.

15. Трение скольжения – трение при относительном движении соприкасающихся тел.

Трение покоя – трение при отсутствии относительного перемещения соприкасающихся тел.

Сила трения скольжения Fтр между поверхностями соприкасающихся тел при их относительном движении зависит от силы нормальной реакции N , или от силы нормального давления Pn , причем Fтр=kN или Fтр=kPn , где k – коэффициент трения скольжения , зависящий от тех же факторов, что и коэффициент трения покоя k0 , а также от скорости относительного движения соприкасающихся тел.

16. Трение качения – это перекатывание одного тела по другому. Сила трения скольжения не зависит от величины трущихся поверхностей, а только от качества поверхностей трущихся тел и от силы, снижающей трущиеся поверхности и направленной перпендикулярно к ним. F=kN , где F – сила трения, N – величина нормальной реакции и k – коэффициент трения при скольжении.

17. Равновесие тел при наличии трения - это максимальная сила сцепления пропорциональная нормальному давлению тела на плоскость.

Угол между полной реакцией, построенной на наибольшей силе трения при данной нормальной реакции, и направлением нормальной реакции, называется углом трения.

Конус с вершиной в точке приложения нормальной реакции шероховатой поверхности, образующая которого составляет угол трения с этой нормальной реакцией, называется конусом трения.

Динамика.

1. Вдинамике рассматривается влияние взаимодействий между телами на их механическое движение.

Масса - это малярная характеристика материальной точки. Масса постоянна. Масса адьетивна (складывается)

Сила – это вектор, который полностью характеризует взаимодействие на ней материальной точки с другими материальными точками.

Материальная точка – тело, размеры и форма которого несущественны в рассматриваемом движении.(ex: в поступательном движении твердое тело можно считать материальной точкой)

Системой материальных точек наз. множество материальных точек, взаимодействующих между собой.

1 закон Ньютона: любая материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока внешние воздействия не изменят этого состояния.

2 закон Ньютона: ускорение, приобретаемое материальной точкой в инерциальной системе отсчета, прямо пропорционально действующей на точку силе, обратно пропорционально массе точки и по направлению совпадает с силой: a=F/m

Определение

Равновесием тела называют такое состояние, когда любое ускорение тела равняется нулю, то есть все действия на тело сил и моментов сил уравновешены. При этом тело может:

  • находиться в состоянии спокойствия;
  • двигаться равномерно и прямолинейно;
  • равномерно вращаться вокруг оси, которая проходит через центр его тяжести.

Условия равновесия тела

Если тело находится в равновесии, то одновременно выполняются два условия.

  1. Векторная сумма всех сил, действующих на тело, равна нулевому вектору : $\sum_n{{\overrightarrow{F}}_n}=\overrightarrow{0}$
  2. Алгебраическая сумма всех моментов сил, действующих на тело, равна нулю: $\sum_n{M_n}=0$

Два условия равновесия являются необходимыми, но не являются достаточными. Приведем пример. Рассмотрим равномерно катящееся без проскальзывания колесо по горизонтальной поверхности. Оба условия равновесия выполняются, однако тело движется.

Рассмотрим случай, когда тело не вращается. Для того, чтобы тело не вращалось и находилось в равновесии, необходимо, чтобы сумма проекций всех сил на произвольную ось равнялась нулю, то есть равнодействующая сил. Тогда тело или находится в спокойствии, или двигается равномерно и прямолинейно.

Тело, которое имеет ось вращения, будет находиться в равновесном состоянии, если выполняется правило моментов сил: сумма моментов сил, которые вращают тело по часовой стрелке, должна равняться сумме моментов сил, которые вращают его против часовой стрелки.

Чтобы получить нужный момент при наименьшем усилии, нужно прикладывать силу как можно дальше от оси вращения, увеличивая тем же плечо силы и соответственно уменьшая значение силы. Примеры тел, которые имеют ось вращения, : рычаг, двери, блоки, коловорот и тому подобное.

Три вида равновесия тел, которые имеют точку опоры

  1. стойкое равновесие, если тело, будучи выведенным из положения равновесия в соседнее ближайшее положение и оставлено в спокойствии, вернется в это положение;
  2. неустойчивое равновесие, если тело, будучи выведенным из положения равновесия в соседнее положение и оставлено в спокойствии, будет еще больше отклоняться от этого положения;
  3. безразличное равновесие - если тело, будучи выведенным в соседнее положение и оставлено в спокойствии, останется в новом своем положении.

Равновесие тела с закрепленной осью вращения

  1. стойким, если в положении равновесия центр тяжести С занимает самое низкое положение из всех возможных ближних положений, а его потенциальная энергия будет иметь наименьшее значение из всех возможных значений в соседних положениях;
  2. неустойчивым, если центр тяжести С занимает наивысший из всех ближних положений, а потенциальная энергия имеет наибольшее значение;
  3. безразличным, если центр тяжести тела С во всех ближних возможных положениях находится на одном уровне, а потенциальная энергия при переходе тела, не изменяется.

Задача 1

Тело A массой m = 8 кг поставлено на шероховатую горизонтальную поверхность стола. К телу привязана нить, перекинутая через блок B (рисунок 1, а). Какой груз F можно подвязать к концу нити, свешивающейся с блока, чтобы не нарушить равновесия тела A? Коэффициент трения f = 0,4; трением на блоке пренебречь.

Определим вес тела ~A: ~G = mg = 8$\cdot $9,81 = 78,5 Н.

Считаем, что все силы приложены к телу A. Когда тело поставлено на горизонтальную поверхность, то на него действуют только две силы: вес G и противоположно направленная реакция опоры RA (рис. 1, б).

Если же приложить некоторую силу F, действующую вдоль горизонтальной поверхности, то реакция RA, уравновешивающая силы G и F, начнет отклоняться от вертикали, но тело A будет находиться в равновесии до тех пор, пока модуль силы F не превысит максимального значения силы трения Rf max, соответствующей предельному значению угла ${\mathbf \varphi }$o(рис. 1, в).

Разложив реакцию RA на две составляющие Rf max и Rn, получаем систему четырех сил, приложенных к одной точке (рис. 1, г). Спроецировав эту систему сил на оси x и y, получим два уравнения равновесия:

${\mathbf \Sigma }Fkx = 0, F - Rf max = 0$;

${\mathbf \Sigma }Fky = 0, Rn - G = 0$.

Решаем полученную систему уравнений: F = Rf max, но Rf max = f$\cdot $ Rn, а Rn = G, поэтому F = f$\cdot $ G = 0,4$\cdot $ 78,5 = 31,4 Н; m = F/g = 31,4/9,81 = 3,2 кг.

Ответ: Масса груза т = 3,2 кг

Задача 2

Система тел, изображённая на рис.2, находится в состоянии равновесия. Масса груза тг=6 кг. Угол между векторами $\widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}=60{}^\circ $. $\left|{\overrightarrow{F}}_1\right|=\left|{\overrightarrow{F}}_2\right|=F$. Найти массу гирь.

Равнодействующая сил ${\overrightarrow{F}}_1и\ {\overrightarrow{F}}_2$ равна по модулю весу груза и противоположна ему по направлению: $\overrightarrow{R}={\overrightarrow{F}}_1+{\overrightarrow{F}}_2=\ -m\overrightarrow{g}$. По теореме косинусов, ${\left|\overrightarrow{R}\right|}^2={\left|{\overrightarrow{F}}_1\right|}^2+{\left|{\overrightarrow{F}}_2\right|}^2+2\left|{\overrightarrow{F}}_1\right|\left|{\overrightarrow{F}}_2\right|{cos \widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}\ }$.

Отсюда ${\left(mg\right)}^2=$; $F=\frac{mg}{\sqrt{2\left(1+{cos 60{}^\circ \ }\right)}}$;

Поскольку блоки подвижные, то $m_г=\frac{2F}{g}=\frac{2m}{\sqrt{2\left(1+\frac{1}{2}\right)}}=\frac{2\cdot 6}{\sqrt{3}}=6,93\ кг\ $

Ответ: масса каждой из гирь равна 6,93 кг