Расшифровка маркировки smd микросхем иностранного производства. Маркировка SMD-резисторов

Привет друзья и читатели сайта "РАДИОСХЕМЫ", продолжаем вместе с вами знакомиться с современными . Сегодняшний обзор - обзор SMD транзисторов, которые вы наверно уже видели в современных различных электронных устройствах.

Транзисторы в SMD корпусе, очень удобны, особенно где каждый миллиметр платы важен. Представьте, как бы изменился мобильный телефон (плата которого полностью из SMD деталей), если бы там использовали обычные выводные DIP детали.

Выше фото SMD транзистора на фоне обычного, в TO 92.

Это фото различных СМД транзисторов, справа - обычный в TO92. Как правило, цоколёвка всех таких транзисторов одинакова - это тоже огромный плюс.

Название различных корпусов, DIP и SMD. Фото можно увеличить.

Как сделаны планарные транзисторы, вы можете увидеть ниже.

У планарных, как и у обычных транзисторов, есть множество видов, составные (Дарлингтон), полевые, биполярные и IGBT (биполярные транзисторы с изолированным затвором).

Обратите внимание, на платах и схемах транзисторы маркируются "Q" и "VT" (так должно быть, хотя некоторые производители брезгуют этим), зачем я это пишу? Часто в один и тот-же корпус, изготовитель может впихнуть всё, что ему хочется - от диода и до линейного стабилизатора напряжения (78хх), даже различных датчиков. Ещё существует внутренняя маркеровка завода, к примеру детали фирмы Epcos. На такие детали очень трудно найти даташит, а иногда его вовсе нет в интернете.

Пайка

Паять такие транзисторы не трудно, особенно ускоряет и делает более легким, процесс пайки различных SMD деталек - микроскоп, пинцет (просто незаменимые вещи) различные флюсы и паяльные жиры с BGA-пастой. Сначала лудим контактные площадки нашего транзистора и платы (не перегрейте).

Затем позиционируем наш транзистор, я делаю это пинцетом.

Припаиваем любую из ножек. Отпускаем пинцет, и позиционируем нашу детальку как можно ровнее, для отличного вида, так сказать:)

Припаиваем оставшиеся "ножки" радиоэлемента.

И вот наш транзистор крепко и хорошо припаян к плате. В следующих статьях, буду писать об этом всём подробнее (флюсы, пинцеты, пайка и т.д). А по поводу обозначений и цоколёвок разных типов транзисторов - на форуме есть несколько очень полезных ссылок. Статью написал BIOS .

Обсудить статью SMD ТРАНЗИСТОРЫ

Мы уже познакомились с основными радиодеталями: резисторами, конденсаторами, диодами, транзисторами, микросхемами и т.п., а также изучили, как они монтируются на печатную плату. Ещё раз вспомним основные этапы этого процесса: выводы всех компонентов пропускают в отверстия, имеющиеся в печатной плате. После чего выводы обрезаются, и затем с обратной стороны платы производится пайка (см. рис.1).
Этот уже известный нам процесс называется DIP-монтаж. Такой монтаж очень удобен для начинающих радиолюбителей: компоненты крупные, паять их можно даже большим «советским» паяльником без помощи лупы или микроскопа. Именно поэтому все наборы Мастер Кит для самостоятельной пайки подразумевают DIP-монтаж.

Рис. 1. DIP-монтаж

Но DIP-монтаж имеет очень существенные недостатки:

Крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
- выводные радиодетали дороже в производстве;
- печатная плата для DIP-монтажа также обходится дороже из-за необходимости сверления множества отверстий;
- DIP-монтаж сложно автоматизировать: в большинстве случаях даже на крупных заводах по производству электронику установку и пайку DIP-деталей приходится выполнять вручную. Это очень дорого и долго.

Поэтому DIP-монтаж при производстве современной электроники практически не используется, и на смену ему пришёл так называемый SMD-процесс, являющийся стандартом сегодняшнего дня. Поэтому любой радиолюбитель должен иметь о нём хотя бы общее представление.

SMD монтаж

SMD компоненты (чип-компоненты) - это компоненты электронной схемы, нанесённые на печатную плату с использованием технологии монтирования на поверхность - SMT технологии (англ. surface mount technology).Т.е все электронные элементы, которые «закреплены» на плате таким способом, носят название SMD компонентов (англ. surface mounted device). Процесс монтажа и пайки чип-компонентов правильно называть SMT-процессом. Говорить «SMD-монтаж» не совсем корректно, но в России прижился именно такой вариант названия техпроцесса, поэтому и мы будем говорить так же.

На рис. 2. показан участок платы SMD-монтажа. Такая же плата, выполненная на DIP-элементах, будет иметь в несколько раз большие габариты.

Рис.2. SMD-монтаж

SMD монтаж имеет неоспоримые преимущества:

Радиодетали дешёвы в производстве и могут быть сколь угодно миниатюрны;
- печатные платы также обходятся дешевле из-за отсутствия множественной сверловки;
- монтаж легко автоматизировать: установку и пайку компонентов производят специальные роботы. Также отсутствует такая технологическая операция, как обрезка выводов.

SMD-резисторы

Знакомство с чип-компонентами логичнее всего начать с резисторов, как с самых простых и массовых радиодеталей.
SMD-резистор по своим физическим свойствам аналогичен уже изученному нами «обычному», выводному варианту. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. Это же правило относится и ко всем другим SMD-компонентам.

Рис. 3. ЧИП-резисторы

Типоразмеры SMD-резисторов

Мы уже знаем, что выводные резисторы имеют определённую сетку стандартных типоразмеров, зависящих от их мощности: 0,125W, 0,25W, 0,5W, 1W и т.п.
Стандартная сетка типоразмеров имеется и у чип-резисторов, только в этом случае типоразмер обозначается кодом из четырёх цифр: 0402, 0603, 0805, 1206 и т.п.
Основные типоразмеры резисторов и их технические характеристики приведены на рис.4.

Рис. 4 Основные типоразмеры и параметры чип-резисторов

Маркировка SMD-резисторов

Резисторы маркируются кодом на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, На рис. 5. резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 кОм. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифробуквенная. Например, резистор с кодом 4R7 имеет сопротивление 4.7 Ом, а резистор с кодом 0R22 – 0.22 Ом (здесь буква R является знаком-разделителем).
Встречаются и резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как предохранители.
Конечно, можно не запоминать систему кодового обозначения, а просто измерить сопротивление резистора мультиметром.

Рис. 5 Маркировка чип-резисторов

Керамические SMD-конденсаторы

Внешне SMD-конденсаторы очень похожи на резисторы (см. рис.6.). Есть только одна проблема: код ёмкости на них не нанесён, поэтому единственный способ ёё определения – измерение с помощью мультиметра, имеющего режим измерения ёмкости.
SMD-конденсаторы также выпускаются в стандартных типоразмерах, как правило, аналогичных типоразмерам резисторов (см. выше).

Рис. 6. Керамические SMD-конденсаторы

Электролитические SMS-конденсаторы

Рис.7. Электролитические SMS-конденсаторы

Эти конденсаторы похожи на своих выводных собратьев, и маркировка на них обычно явная: ёмкость и рабочее напряжение. Полоской на «шляпке» конденсатора маркируется его минусовой вывод.

SMD-транзисторы


Рис.8. SMD-транзистор

Транзисторы мелкие, поэтому написать на них их полное наименование не получается. Ограничиваются кодовой маркировкой, причём какого-то международного стандарта обозначений нет. Например, код 1E может обозначать тип транзистора BC847A, а может – какого-нибудь другого. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники. Сложности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатную плату, без документации производителя на эту плату иногда бывает очень сложно.

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов приведены на рисунке ниже:

Рис.9. SMD-диоды и SMD-светодиоды

На корпусе диода обязательно указывается полярность в виде полосы ближе к одному из краев. Обычно полосой маркируется вывод катода.

SMD-cветодиод тоже имеет полярность, которая обозначается либо точкой вблизи одного из выводов, либо ещё каким-то образом (подробно об этом можно узнать в документации производителя компонента).

Определить тип SMD-диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода выштамповывается малоинформативный код, а на корпусе светодиода чаще всего вообще нет никаких меток, кроме метки полярности. Разработчики и производители современной электроники мало заботятся о её ремонтопригодности. Подразумевается, что ремонтировать печатную плату будет сервисный инженер, имеющий полную документацию на конкретное изделие. В такой документации чётко описано, на каком месте печатной платы установлен тот или иной компонент.

Установка и пайка SMD-компонентов

SMD-монтаж оптимизирован в первую очередь для автоматической сборки специальными промышленными роботами. Но любительские радиолюбительские конструкции также вполне могут выполняться на чип-компонентах: при достаточной аккуратности и внимательности паять детали размером с рисовое зёрнышко можно самым обычным паяльником, нужно знать только некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее об автоматическом и ручном SMD-монтаже будет рассказано отдельно.

Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.

Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.

Что представляет собой данный элемент электрических схем

Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.

Вольт-амперная характеристика стабилитрона

Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.

Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.

Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:

  • UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
  • ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
  • IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
  • IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
  • IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.

Такая маркировка важна при выборе элемента под определенную электросхему.

Обозначения работы элемента электросхемы

Схематическое обозначение стабилитрона

Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:

Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.

Включение стабилитрона

На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.

Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.

Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.

Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.

Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

Как отличить стабилизационный диод от обычного полупроводника

Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:

Схема приставки мультиметра

В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.

Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.

Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.

Подробно о цветовой маркировке стабилизирующего диода

Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:

  • буква или цифра;
  • буква.

Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:

Пример маркировки микросхем

Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.

Цветовая маркировка стабилитрона

  • первая полоска обозначает тип устройства;
  • вторая – полупроводник;
  • третья – что это за прибор, а также, какая у него проводимость;
  • четвертая — номер разработки;
  • пятая — модификация устройства.

Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.

Заключение

Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.


Правильно выбираем автономные датчики для движения с сиреной

Для изготовления печатных плат наиболее часто используют технологию поверхностного монтажа. Этот способ ещё называют ТМП (технология монтажа на поверхность), а также SMD технология. Соответственно, детали, применяемые в ТМП, называются чип или смд-компонентами.

Технология поверхностного монтажа

Данный способ заключается в том, что элементы не вставляются в заранее заготовленные отверстия, как в случае с традиционной технологией. Они устанавливаются на контактные площадки платы, куда уже была предварительно нанесена паяльная паста. Потом подготовленное изделие помещается в печь для групповой пайки компонентов. Готовую плату очищают и покрывают защитным слоем.

Преимущества использования smd деталей

Производство плат таким способом имеет ряд преимуществ по сравнению с традиционной технологией монтажа в отверстия :

  • более быстрый монтаж;
  • повышается эффективность производства;
  • является более дешёвым способом изготовления;
  • позволяет использовать детали более маленьких размеров, что уменьшает размер и вес готовых изделий.

Smd маркировка электрических элементов

Данной маркировке подлежат радиодетали, применяемые для поверхностного монтажа. Марка наносится на корпус и характеризует его геометрические размеры, а также электрические характеристики чип-компонентов.

Условно чип-компоненты классифицируют по количеству выводов и по размерам.

Согласно классификации, электронные детали делятся на следующие группы:

  • Двухконтактные, к которым относятся пассивные элементы (конденсаторы, резисторы и диоды) квадратной или цилиндрической формы, танталовые виды конденсаторов и диоды. Корпуса, которые относятся к данному типу, обозначаются аббревиатурой SOD (SOD323, SOD128 и т.д.) и WLCSP2;
  • Трёхконтактные содержат обозначения DPAK, D2PAK, D3PAK. Корпуса имеют одинаковую конструкцию, но отличаются по размерам. Самый габаритный D3PAK. Предназначены для полупроводниковых деталей с высоким выделением тепла. Разработчиком данного корпуса является Motorola. Также этот тип маркируется SOT (SOT883B, SOT23 и т.д.);
  • Имеющие более четырёх контактов контакты размещаются по двум сторонам. К ним относятся WLCSP(N) (где N – количество выводов), SOT, SOIC, SSOP, CLCC, LQFP, DFN,DIP / DIL,Flat Pack,TSOP,ZIP;
  • Имеющие более четырёх выводов, расположенных по четырём сторонам: LCC, PLCC, QFN, QFP, QUIP;
  • С выводами, расположенными в виде решётки: BGA, uBGA.

Промышленность выпускает корпуса с выводами и без них. Если модель не предусматривает наличия выводов, то на их месте размещаются контактные площадки или шарики припоя (например, тип μBGA, LFBGA и др.).

Промышленность выпускает следующие типы чип-компонентов: резисторы, транзисторы, конденсаторы, диоды, катушки индуктивности и дроссели, светодиоды, микросхемы и стабилитроны.

Чип-конденсаторы

Электролитические конденсаторы производятся в форме бочонка, а танталовые и керамические в основном в форме параллелепипеда.

В маркировке керамического компонента не всегда указываются ёмкость и рабочее напряжение, а на электролитических – указываются. Полоска на шляпке располагается со стороны минусового вывода.

Маркировка smd резисторов

Обозначения для сопротивлений наносятся на корпус и состоят из нескольких цифр или цифр и буквы.

Если марка резистора состоит из четырёх или трёх цифр, то последняя обозначает количество нулей после числа, которое образуется из первых цифр. Например, число 223 обозначает 22000Ом или 22кОм, а число 8202 – 82000 или 82кОм.

Если в марке присутствует символ R, то этот символ обозначает разделитель целой и дробной части числа, например, если на резисторе указывается 4R7, то это соответствует 4,7Ом, а 0R22 – 0,22Ом.

Также имеются резисторы-перемычки или чип-компоненты с нулевым сопротивлением. На схемах их используют так же, как предохранители.

Существуют стандарты типоразмеров для корпусов. Например, для прямоугольных резисторов и керамических конденсаторов типоразмера 0805 длина деталей будет составлять 0,6 дюйма, ширина – 0,8, а высота – 0,23.

Smd индуктивности

Катушки индуктивности и дроссели для поверхностного монтажа выпускаются в корпусах тех же типоразмеров, что и резисторы.

Маркируются также четырьмя цифрами. Первые две обозначают длину, следующие две – ширину. Параметры задаются в дюймах. То есть если имеется катушка с маркой 0805, то это означает, что деталь имеет длину 0,08 дюймов, а ширину – 0,05.

Диоды smd

Корпуса для диодов и стабилитронов могут иметь форму цилиндра или параллелепипеда. Они также определяются типоразмерами, которые соответствуют корпусам резисторов.

На корпусе детали обязательно указывается полярность. Вывод катода чаще всего обозначается полосой, расположенной у соответствующего края.

Smd транзисторы

Выпускаются малой, средней или большой мощности. На них также наносится кодовая маркировка, поскольку маленькие размеры детали не позволяют разместить на них полное наименование.

Внимание! Отсутствие международного стандарта маркировки приводит к тому, что один и тот же код может обозначать разные типы транзисторов. Поэтому расшифровка типа полупроводникового прибора на плате может быть выполнена практически только из соответствующей документации на плату.

Корпуса выпускаются двух типов: SOT, DPAK. В них также могут располагаться и диодные сборки.

Ремонт плат с поверхностным монтажом деталей можно производить как в домашних условиях, так и в сервисных центрах, однако для пайки считается удобным типоразмер 0805. Более мелкие детали монтируются с помощью печки.

Таким образом, подбор сгоревшей smd радиодетали может вызвать определённые трудности у радиолюбителя. Поэтому перед началом выполнения ремонта нужно обязательно иметь в наличии документацию на плату.

Видео

Были схемы на дискретных электронных элементах - резисторах, транзисторах, конденсаторах, диодах, индуктивностях, и они при работе нагревались. И их еще приходилось охлаждать - целая система вентиляции и охлаждения строилась. Нигде не было кондиционеров, люди жару терпели, а все машинные залы продувались и охлаждались централизованно и непрерывно, днями и ночами. И расход энергии шел на мегаватты. Блок питания компьютера занимал отдельный шкаф. 380 вольт, три фазы, подводка снизу, из-под фальшпола. Другой шкаф занимал процессор. Еще один - оперативная память на магнитных сердечниках. А все вместе занимало зал площадью около 100 квадратных метров. И машина имела оперативную память, страшно сказать, 512 КБ.

А надо было делать компьютеры все мощнее и мощнее.

Потом изобрели БИС - большие интегральные схемы. Это когда вся схема прорисована в одной твердотельной форме. Многослойный параллелепипед, в котором слои микроскопической толщины содержат нариcованные, напыленные или наплавленные в вакууме те же самые электронные элементы, только микроскопические, и «раздавленные» в плоскость. Обычно целая БИС герметизируется в одном корпусе, и тогда уж ничего не боится - железяка железякой, хоть молотком бей (шутка).

Только БИС (или СБИС - сверхбольшие интегральные схемы) содержат функциональные блоки или отдельные электронные устройства - процессоры, регистры, блоки полупроводниковой памяти, контроллеры, операционные усилители. И стоит задача их собрать уже в конкретное изделие: мобильный телефон, флешку, компьютер, навигатор и пр. Но они же такие маленькие, эти БОЛЬШИЕ интегральные схемы, как их собрать?

И тогда придумали технологию поверхностного монтажа.

Метод сборки комплексных электронных схем SMT/ТМП

Собирать на плату вперемешку микросхемы, БИСы, сопротивления, конденсаторы по старинке очень скоро стало неудобно и нетехнологично. И монтаж по традиционной «сквозной» технологии стал громоздким и трудно автоматизируемым, и результаты получались не в согласии с реалиями времени. Миниатюрные гаджеты требуют и миниатюрных, и, самое главное, удобных в компоновке плат. Промышленность уже может выпускать сопротивления, транзисторы и пр. совсем маленькими и совсем плоскими. Дело оставалось за малым - сделать плоскими, прижатыми к поверхность их контакты. И разработать технологию трассировки и изготовления плат как основы для поверхностного монтажа, а также методы пайки элементов к поверхности. Кроме прочих плюсов, пайку научились делать целиком - всю плату сразу, что ускоряет работу и дает однородность ее качества. Этот метод получил название «т ехнология м онтажа на п оверхность (ТМП)», или surface mount technology (SMT). Так как монтируемые элементы стали уж совсем плоскими, в обиходе они получили название «чипы», или «чип-компоненты» (или еще SMD - surface mounted device, например, SMD-резисторы).

Шаги изготовления платы по ТМП

Изготовление ТМП-платы затрагивает как процесс ее проектирования, изготовления, подбор определенных материалов, так и специфические технические средства для припаивания чипов на плату.

  1. Проектирование и изготовление платы - основа для монтажа. Вместо отверстий для сквозного монтажа делаются контактные площадки для припаивания плоских контактов элементов.
  2. Нанесение паяльной пасты на площадки. Это можно делать шприцем вручную или с помощью трафаретной печати при массовом изготовлении.
  3. Точная установка компонентов на плату поверх нанесенной паяльной пасты.
  4. Помещение платы со всеми компонентами в печь для пайки. Паста оплавляется и очень компактно (благодаря присадкам, увеличивающим поверхностное натяжение припоя) припаивает контакты с одинаковым качеством по всей поверхности платы. Однако критичны требования как ко времени операции, температуре, так и к точности химического состава материалов.
  5. Окончательная обработка: остывание, мойка, нанесение защитного слоя.

Различаются варианты технологии для серийного и для ручного производства. Массовое производство при условии широкой автоматизации и последующем контроле качества дает и гарантировано высокие результаты.

Однако SMT-технология может вполне уживаться и с традиционным монтажом на одной плате. В этом случае как раз и может быть востребован монтаж SMT вручную.

Резисторы SMD

Резистор - самый распространенный компонент электронных схем. Существует даже специально разработанная схемотехника, которая строится только из транзисторов и резисторов (T-R-логика). Это значит, без остальных элементов построить процессор можно, а вот без этих двух - никак. (Пардон, есть еще ТТ-логика, где вообще одни транзисторы, но некоторым из них приходится играть роль резисторов). Это в производстве больших интегральных схем доходят до таких крайностей, а для поверхностного монтажа все-таки выпускается весь набор необходимых элементов.

Для столь компактной сборки они должны обладать строго определенными размерами. Каждый SMD-прибор - это маленький параллелепипед с выступающими из него контактами - ножками, или пластинками, или металлическими наконечниками с двух сторон. Важно то, что контакты на монтажной стороне должны лежать строго в плоскости, и на этой плоскости иметь необходимую для пайки площадь - тоже прямоугольную.

Размеры резистора: l - длина, w - ширина, h - высота. За типоразмеры берутся важные для монтажа длина и ширина.

Они могут быть кодированы в одной из двух систем: дюймовой (JEDEC) или метрической (мм). Коэффициент пересчета из одной системы в другую - это длина дюйма с мм = 2,54.

Типоразмеры кодируются четырехзначным цифровым кодом, где первые две цифры - длина, вторые - ширина девайса. Причем размеры берутся или в сотых долях дюйма, или в десятых долях миллиметра, в зависимости от стандарта.

А код 1608 в метрической системе означает 1,6 мм длины и 0,8 мм ширины. Применив коэффициент пересчета, легко убедиться, что это один и тот же типоразмер. Однако существуют и другие измерения, которые определяются типоразмером.

Маркировка чип-резисторов, номиналы

Ввиду малой площади прибора для нанесения обычного для резисторов номинала пришлось изобретать специальную маркировку. Их бывает две чисто цифровые - трехцифровая и четырехцифровая) и две буквенно-цифровых (EIA-96), в которой две цифры и буква и кодировка для значений сопротивления меньше 0, в которой используется буква R для указания положения десятичной точки.

И есть еще одна особая маркировка. «Резистор» без всякого сопротивления, то есть просто перемычка из металла, имеет маркировку 0, или 000.

Цифровые маркировки

Цифровые маркировки содержат показатель (N) множителя (10 N) в качестве последней цифры, остальные две или три - мантисса сопротивления.