Закон ома для участка цепи простым языком. Закон Ома для однородного участка цепи

На неоднородном участке цепи на носители тока действуют, кроме электростатических сил , сторонние силы . Сторонние силы способны вызывать упорядоченное движение носителей тока в той же мере, как и силы электростатические. В предыдущем параграфе мы выяснили, что в однородном проводнике средняя скорость упорядоченного движения носителей тока пропорциональна электростатической силе . Очевидно, что там, где, кроме электростатической силы, на носители действуют сторонние силы, средняя скорость упорядоченного движения носителей будет пропорциональна суммарной силе . Соответственно плотность тока в этих точках оказывается пропорциональной сумме напряженностей

Формула (35.1) обобщает формулу (34.3) на случай неоднородного проводника. Она выражает в дифференциальной форме закон Ома для неоднородного участка цепи.

От закона в дифференциальной форме можно перейти к интегральной форме закона Ома. Рассмотрим неоднородный участок цепи. Допустим, что внутри этого участка существует линия (мы будем называть ее контуром тока), удовлетворяющая следующим условиям: 1) в каждом сечении, перпендикулярном к контуру, величины имеют с достаточной точностью одинаковые значения; 2) векторы в каждой точке направлены по касательной к контуру. Поперечное сечение проводника может быть непостоянным (рис. 35.1).

Выберем произвольно направление движения по контуру. Пусть выбранное направление соответствует перемещению от конца 1 к концу 2 участка цепи (направление 1-2). Спроектируем векторы, входящие в соотношение (35.1), на элемент контура . В результате получим

В силу сделанных предположений проекция каждого из векторов равна модулю вектора, взятому со знаком плюс или минус в зависимости от того, как направлен вектор по отношению к . Например, если ток течет в направлении 1-2, и , если ток течет в направлении 2-1.

Вследствие сохранения заряда сила постоянного тока в каждом сечении должна быть одинаковой. Поэтому величина постоянна вдоль контура. Силу тока в данном случае нужно рассматривать как алгебраическую величину.

Напомним, что направление 1-2 мы выбрали произвольно. Поэтому, если ток течет в выбранном направлении, его следует считать положительным; если же ток течет в противоположном направлении (т. е. от конца 2 к концу 1), его силу следует считать отрицательной.

Заменим в (35.2) отношением а проводимость о - удельным сопротивлением . В итоге получится соотношение

Умножим это соотношение на и проинтегрируем вдоль контура:

Выражение представляет собой сопротивление участка контура длины а интеграл от этого выражения - сопротивление R участка цепи. Первый интеграл в правой части дает а второй интеграл - действующую на участке. Таким образом, мы приходим к формуле

Рис. 3 Перемещение заряда на этих участках возможно лишь с помощью сил

неэлектрического происхождения (сторонних сил): химические процессы, диффузия носителей заряда, вихревые электрические поля. Аналогия: насос, качающий воду в водонапорную башню, действует за счет негравитационных сил (электромотор).

Сторонние силы можно характеризовать работой, которую они совершают над перемещающимися зарядами.

Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой. Э.Д.С. действующей в цепи.

Ясно, что размерность Э.Д.С. совпадает с размерностью потенциала, т.е. измеряется в вольтах.

Стороннюю силу, действующую на заряд, можно представить в виде:

= ∫ F ст . d l

Q ∫ Eст . d l ,

ε 12

= ∫ Eст . d l .

Для замкнутой цепи: ε = ∑ ε i

= ∫ Eст . d l .

Циркуляция вектора напряженности сторонних сил равна Э.Д.С., действующей в замкнутой цепи (алгебраической сумме Э.Д.С.).

При этом необходимо помнить, что поле сторонних сил не является потенциальным, и к нему нельзя применять термин – разность потенциалов или напряжение.

7.5. Закон Ома для неоднородного участка цепи.

Рассмотрим неоднородный участок цепи, участок, содержащий источник Э.Д.С.

(т.е. участок, – где действуют неэлектрические силы). Напряженность E поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил, т.е.

E = Eq + Eст . .

Величина, численно равная работе по переносу единичного положительного заряда суммарным полем кулоновских и сторонних сил на участке цепи (1 – 2), называется напряжением на этом участке U12 (Рис. 4)

2 r r

U 12 = ∫ E q d l +

∫ Eст . d l ;

Eq d l = − dφ и ∫ Eq d l

= φ 1 − φ 2 ;

U 12 = (φ 1 – φ 2 ) + ε 12

Напряжение на концах участка цепи совпадает с разностью потенциалов только в

случае, если на этом участке нет Э.Д.С., т.е. на однородном участке цепи.

I·R12 = (φ1 – φ2 ) + ε 12

Это обобщенный закон Ома. Обобщенный закон Ома выражает закон сохранения энергии применительно к участку цепи постоянного тока. Он в равной мере справедлив как для пассивных участков (не содержащих Э.Д.С.), так и для активных.

В электротехнике часто используют термин падения напряжения – изменение напряжения вследствие переноса заряда через сопротивление

В замкнутой цепи: φ 1 = φ 2 ;

I RΣ = ε

R∑

Где R Σ =R + r; r – внутреннее сопротивление активного участка цепи (Рис. 5).

Тогда закон Ома для замкнутого участка цепи, содержащего Э.Д.С. запишется в

R + r

7.6. Закон Ома в дифференциальной форме.

Закон Ома в интегральной форме для однородного участка цепи (не содержащего Э.Д.С.)

I = U

Для однородного линейного проводника выразим R через ρ

R = ρ

ρ – удельное объемное сопротивление; [ρ ] = [Ом м ].

Найдем связь между j и E в бесконечно малом объеме проводника – закон Ома в

дифференциальной форме.

В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов (Рис.6) движутся в направлении действия силы, т.е. плотность тока

j E , следовательно, векторы коллинеарны.

А мы знаем что: j =

E , т.е.

E j или

j = σ E

это запись закона Ома в дифференциальной форме.

Здесь σ – удельная электропроводность. Размерность j – [ Oм − 1 м − 1 ]; Плотность тока можно выразить через заряд, n и v r др . .

j = en vr др .

обозначим: b = v E др . , то v r др . = b E ;

j = enb E ,

а если σ = enb ,

где n – число пар ионов, b – расстояние. j = j E

– закон Ома в дифференциальной форме.

7.7. Работа и мощность тока. Закон Джоуля - Ленца.

Рассмотрим произвольный участок цепи, к концам которого приложено напряжение U . За время dt через каждое сечение проводника проходит заряд

Полезно вспомнить и другие формулы для мощности и работы:

N = RI2

A = RI2 t

В 1841г. Английский физик Джеймс Джоуль и русский физик

Эмилий Ленц установили закон теплового действия электрического

ДЖОУЛЬ Джеймс Пресскотт (Рис. 6)

(24.12.1818 – 11. 10.1889) – английский физик, один

из первооткрывателей закона сохранения энергии.

Первые уроки по физике ему давал Дж. Дальтон, под

влиянием которого Джоуль начал свои эксперименты.

Работы посвящены электромагнетизму, кинетической

теории газов.

ЛЕНЦ Эмилий Христианович (Рис. 7) (24.2.1804

– 10.2.1865) – русский физик. Основные работы в области

электромагнетизма. В 1833 установил правило определения

электродвижущей силы индукции (закон Ленца), а в 1842 (независимо

от Дж. Джоуля) – закон теплового действия электрического тока (закон Джоуля - Ленца). Открыл обратимость электрических машин. Изучал зависимость сопротивление металлов от температуры. Работы относятся также к геофизике.

Независимо друг от друга Джоуль и Ленц показали, что при протекании тока в проводнике выделится количество теплоты:

(7.7.7) это закон Джоуля – Ленца в интегральной форме.

Следовательно, нагревание происходит за счет работы, совершаемой силами поля над зарядом (мощность выделения тепла N = RI2 ).

Получим закон Джоуля – Ленца в дифференциальной форме.

dQ = RI 2 dt = ρ dS dl (jdS ) 2 dt = ρj2 dldSdt = ρj2 dldSdt = ρj2 dVdt,

Наиболее применяемое в электротехнике соотношение между основными электрическими величинами – закон Ома, установленный немецким физиком Георгом Омом, эмпирическим способом, в 1826 г. С его помощью устанавливается связь между напряжением (электродвижущей силой), сопротивлением элементов этой цепи, силой проходящего тока.

Электрические параметры, которые описываются законом Ома:

  • Сила тока определяется количеством заряда, проходящего по проводнику за некоторое время, обозначается буквой I, единица измерения – ампер (А). Входит в основные единицы международной системы Си;
  • Электрическое напряжение, единица измерения – вольт, понятие ввёл тот же Георг Ом. Вольт может быть выражен через работу по перемещению заряда, выделяемую мощность при токе 1 ампер, имеет эталонные источники в виде высокостабильных гальванических элементов. Часто указывается как разность потенциалов, в некоторых случаях применяется понятие электродвижущая сила (ЭДС). Для обозначения могут использоваться буквы U, V;
  • R – сопротивление (электрическое), указывает на свойства проводника, оказывающие препятствия прохождению тока. Значительно зависит от материала проводника и температуры. Единица измерения – 1 ом, обозначение Ом или Ω.

Классическая формулировка закона Ома: сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Это выражение справедливо для электрической цепи, которая не содержит дополнительной электродвижущей силы, обеспечивающей электрический ток, цепи, определяемой как однородная. В большинстве случаев применяется именно такая формула. На практике часто требуется вычислить значение тока, протекающего через некоторый элемент с известным сопротивлением, для этого достаточно измерить падение напряжения (разность потенциалов) на выводах этого устройства, например, резистора. При заданных любых двух значениях можно рассчитать неизвестное, так же, кроме величин, входящих в выражение, определяется электрическая мощность.

Важно! При расчётах используются величины только одной размерности – целые значения вольт, ампер, ом или соответствующие им кратные и дольные единицы.

Неоднородная цепь

Закон Ома для отдельного участка цепи не учитывает присутствие источника питания, его свойства не входят в вычисления. Для цепи, называемой неоднородной, содержащей ЭДС любого рода и её источник, в известную формулу следует добавить внутреннее сопротивление самого питающего устройства:

Здесь Е – ЭДС источника напряжения, r – его внутреннее сопротивление. Варианты наименований – закон Ома для неоднородного участка цепи, для полной или замкнутой цепи. Выражение мало отличается от приведённого выше – вместо напряжения присутствует ЭДС и сопротивление источника питания.

Следует отметить, что понятие внутреннего сопротивления имеет смысл исключительно для химических источников тока, в случае применения других устройств, таких как любого вида блоков питания без батарей, говорят о выходном сопротивлении и нагрузочной способности этого блока.

В практических применениях закон Ома для неоднородного участка цепи в таком виде применяется редко, в основном для измерения самого внутреннего сопротивления аккумулятора, других элементов питания.

Закон применим и для переменного напряжения, если сопротивлением является активная нагрузка. С его помощью определяются действующие (среднеквадратичные) параметры цепи. В случае индуктивной, ёмкостной или комплексной нагрузки и для разных частот сопротивление является реактивным, значительно отличающимся от измеренного обычным методом – омметром.

Закон Ома получен практическим путём, поэтому не может быть фундаментальным, но точно описывает взаимосвязь между наиболее часто используемыми электрическими величинами.

Видео

8.3. Закон Ома

8.3.2. Закон Ома для неоднородного участка и для полной цепи

Электродвижущая сила (ЭДС) источника численно равна работе, совершаемой сторонними силами по перемещению единичного положительного заряда, и определяется отношением:

ℰ = A ст q ,

где A ст - работа сторонних сил (сил некулоновского происхождения) по перемещению заряда q .

В Международной системе единиц электродвижущая сила (ЭДС) измеряется в вольтах (1 В).

Участок цепи называется неоднородным (рис. 8.8), если он включает ЭДС источника, т.е. на нем действуют сторонние силы.

Рис. 8.8

Закон Ома для неоднородного участка цепи имеет следующий вид:

I = φ 2 − φ 1 + ℰ R + r ,

где I - сила тока; ϕ 1 - потенциал точки A ; ϕ 2 - потенциал точки B ; ℰ - ЭДС источника тока; R - сопротивление участка; r - внутреннее сопротивление источника тока.

Полная ( замкнутая ) цепь изображена на рис. 8.9.

Рис. 8.9

Точками A и B обозначены клеммы источника ЭДС. Замкнутую цепь можно разделить на два участка:

  • внутренний - участок, содержащий источник ЭДС;
  • внешний - участок, не содержащий источник ЭДС.

Направление электрического тока:

  • во внутренней цепи - от «минуса» к «плюсу»;
  • во внешней цепи - от «плюса» к «минусу».

Сила тока в полной (замкнутой ) цепи (см. рис. 8.9) определяется законом Ома (сила тока в замкнутой цепи, содержащей источник тока, прямо пропорциональна электродвижущей силе этого источника и обратно пропорциональна сумме внешнего и внутреннего сопротивлений):

I = ℰ R + r ,

где I - сила тока; ℰ - электродвижущая сила (ЭДС) источника, ℰ = A ст /q ; A ст - работа сторонних сил (сил некулоновского происхождения) по перемещению положительного заряда q ; R - внешнее сопротивление цепи (нагрузка); r - внутреннее сопротивление источника тока.

Рис. 8.9

Электродвижущая сила (ЭДС) источника тока в замкнутой цепи представляет собой сумму

ℰ = IR + Ir ,

где IR - падение напряжения (разность потенциалов) на внешнем участке цепи; Ir - падение напряжения в источнике; I - сила тока; R - внешнее сопротивление цепи (нагрузка); r - внутреннее сопротивление источника тока.

Приведенное уравнение, записанное в виде

ℰ − Ir = IR ,

свидетельствует о равенстве разности потенциалов на клеммах источника тока U r = ℰ − Ir и разности потенциалов на внешнем участке цепи U R = IR , т.е.

U r = U R .

Короткое замыкание в полной цепи имеет место, если нагрузка во внешней цепи отсутствует, т.е. внешнее сопротивление равно нулю: R = 0.

Сила тока короткого замыкания i определяется формулой

Пример 8. ЭДС источника тока равна 18 В. К источнику подключен резистор, сопротивление которого в 2 раза больше внутреннего сопротивления источника. Определить разность потенциалов на зажимах источника тока.

Решение . Разность потенциалов на зажимах источника определяется формулой

U = ℰ − Ir ,

где ℰ - ЭДС источника тока; I - сила тока в цепи; r - внутреннее сопротивление источника тока.

Сила тока определяется законом Ома для полной цепи:

I = ℰ R + r ,

Подставим данное выражение в формулу для вычисления разности потенциалов на зажимах источника:

U = ℰ − ℰ r R + r = ℰ (1 − r R + r) = ℰ R R + r .

С учетом соотношения между сопротивлениями резистора и источника (R = 2r ) получим

U = 2 ℰ 3 .

Расчет дает значение:

U = 2 ⋅ 18 3 = 12 В.

Разность потенциалов на зажимах источника составляет 12 В.

Пример 9. Внутреннее сопротивление батареи составляет 1,5 Ом. При замыкании на резистор сопротивлением 6,0 Ом батарея элементов дает ток силой 1,0 А. Найти силу тока короткого замыкания.

Решение . Сила тока короткого замыкания определяется формулой

где ℰ - ЭДС источника тока; r - внутреннее сопротивление источника тока.

По закону Ома для полной цепи,

I = ℰ R + r ,

где R - сопротивление резистора.

Выразим из записанной формулы ЭДС источника и подставим в выражение для силы тока короткого замыкания:

i = I (R + r) r .

Произведем вычисление:

i = 1,0 ⋅ (6,0 + 1,5) 1,5 = 5,0 А.

Сила тока короткого замыкания для источника с указанными значениями ЭДС и внутреннего сопротивления составляет 5,0 А.

Пример 10. Шесть одинаковых резисторов по 20 Ом каждый соединены в цепь так, как показано на рисунке. К концам участка подключают источник с ЭДС, равной 230 В, и внутренним сопротивлением 2,5 Ом. Найти показания амперметра A2.

Решение . На рис. а показана схема цепи, на которой обозначены токи, протекающие в отдельных ее участках.

На участке сопротивлением R 1 течет ток I 1 . Далее ток I 1 разветвляется на две части:

  • на участке с последовательно соединенными резисторами сопротивлениями R 2 , R 3 и R 4 течет ток I 2 ;
  • на участке сопротивлением R 5 течет ток I 3 .

Таким образом,

I 1 = I 2 + I 3 .

Указанные участки соединены между собой параллельно, поэтому падения напряжения на них одинаковы:

I 2 R общ2 = I 3 R 5 ,

где R общ2 - сопротивление участка с последовательно соединенными резисторами R 2 , R 3 и R 4 , R общ2 = R 2 + R 3 + R 4 = 3R , R 2 = R 3 = R 4 = R , R 5 = R .

Записанные уравнения образуют систему:

I 1 = I 2 + I 3 , I 2 R общ 2 = I 3 R 5 . }

С учетом выражений для R общ2 и R 5 система принимает вид:

I 1 = I 2 + I 3 , 3 I 2 = I 3 . }

Решение системы относительно силы тока I 2 дает

I 2 = I 1 4 = 0,25 I 1 .

Данное выражение определяет искомую величину - силу тока в амперметре A2.

Сила тока I 1 определяется законом Ома для полной цепи:

I 1 = ℰ R общ + r ,

где R общ - общее сопротивление внешней цепи (резисторов R 1 , R 2 , R 3 , R 4 , R 5 и R 6).

Рассчитаем общее сопротивление внешней цепи.

Для этого преобразуем схему так, как показано на рис. б .

Участки R общ2 и R 5 соединены параллельно, их общее сопротивление

R общ 1 = R общ 2 R 4 R общ 2 + R 4 = 3 R 4 = 0,75 R ,

где R общ2 = 3R ; R 4 = R .

Еще раз преобразуем схему так, как показано на рис. в .

Участки сопротивлениями R 1 , R общ1 и R 6 соединены последовательно, их общее сопротивление

R общ = R 1 + R общ 1 + R 6 = R + 0,75 R + R = 2,75 R ,

где R общ1 = 0,75R и R 1 = R 6 = R .

Искомая сила тока определяется формулой

I 2 = 0,25 I 1 = 0,25 ℰ 2,75 R + r .

Произведем вычисление:

I 2 = 0,25 ⋅ 230 2,75 ⋅ 20 + 2,5 = 1,0 А.

Амперметр А2 покажет силу тока 1,0 А.

Пример 11. Шесть одинаковых резисторов по 20 Ом каждый и два конденсатора с электроемкостями 15 и 25 мкФ соединены в цепь так, как показано на рисунке. К концам участка подключают источник с ЭДС, равной 0,23 кВ, и внутренним сопротивлением 3,5 Ом. Найти разность потенциалов между обкладками второго конденсатора.

Решение . Между точками A и Б ток не протекает, так как между этими точками в схему включены конденсаторы. Для определения разности потенциалов между указанными точками упростим схему, исключив из рассмотрения участок АБ.

На рис. а показана схема упрощенной цепи.

Ток течет через резисторы R 1 , R 2 , R 3 , R 4 и R 6 , соединенные последовательно. Общее сопротивление такой цепи:

R общ = R 1 + R 2 + R 3 + R 4 + R 6 = 5R ,

где R 1 = R 2 = R 3 = R 4 = R 6 = R .

Сила тока I определяется законом Ома для полной цепи:

I = ℰ R общ + r = ℰ 5 R + r ,

где ℰ - ЭДС источника тока, ℰ = 0,23 кВ; r - внутреннее сопротивление источника тока, r = 3,5 Ом; R общ - общее сопротивление цепи, R общ = 5R .

Рассчитаем падение напряжения между точками А и Б.

Между точками А и Б находятся резисторы сопротивлениями R 2 , R 3 и R 4 , соединенные между собой последовательно, как показано на рис. б .

Их общее сопротивление

R общ1 = R 2 + R 3 + R 4 = 3R .

Падение напряжения на указанных резисторах определяется формулой

U АБ = IR общ1 ,

или в явном виде, -

U АБ = 3 ℰ R 5 R + r .

Между точками А и Б включена батарея конденсаторов C 1 и C 2 , соединенных между собой последовательно, как показано на рис. в .

Их общая электроемкость

C общ = C 1 C 2 C 1 + C 2 ,

где C 1 - электроемкость первого конденсатора, C 1 = 15 мкФ; C 2 - электроемкость второго конденсатора, C 2 = 25 мкФ.

Разность потенциалов на обкладках батареи:

U общ = q C общ,

где q - заряд на обкладках каждого из конденсаторов (совпадает с зарядом батареи при последовательном соединении конденсаторов), q = = C 1 U 1 = C 2 U 2 ; U 1 - разность потенциалов между обкладками первого конденсатора; U 2 - разность потенциалов между обкладками второго конденсатора (искомая величина).

В явном виде разность потенциалов между обкладками конденсаторов определяется формулой

U общ = C 2 U 2 C общ = (C 1 + C 2) U 2 C 1 .

Падение напряжения на резисторах между точками А и Б совпадает с разностью потенциалов на батарее конденсаторов, подключенной к указанным точкам:

U АБ = U общ.

Данное равенство, записанное в явном виде

3 ℰ R 5 R + r = (C 1 + C 2) U 2 C 1 ,

позволяет получить выражение для искомой величины:

U 2 = 3 ℰ R C 1 (5 R + r) (C 1 + C 2) .

Произведем вычисление:

U 2 = 3 ⋅ 0,23 ⋅ 10 3 ⋅ 20 ⋅ 15 ⋅ 10 − 6 (5 ⋅ 20 + 3,5) (15 + 25) ⋅ 10 − 6 = 50 В.

Между обкладками второго конденсатора разность потенциалов составляет 50 В.

Электрический ток - упорядоченное движение нескомпенсированного электрического заряда. Если это движение возникает в проводнике, то электрический ток называется током проводимости. Электрический ток могут вызвать кулоновские силы. Поле этих сил называют кулоновским и характеризуют напряженностью Е кул.

Движение зарядов может возникнуть и под действием неэлектрических сил, называемых сторонними (магнитные, химические). Е ст - напряженность поля этих сил.

Упорядоченное движение электрических зарядов может возникнуть и без действия внешних сил (диффузия, химические реакции в источнике тока). Для общности рассуждения и в этом случае будем вводить эффективное стороннее поле Е ст.

Полная работа по перемещению заряда на участке цепи:

Разделим обе части последнего уравнения на величину перемещаемого по данному участку заряда.

.

Разность потенциалов на участке цепи.

Напряжением на участке цепи называется величина, равная отношению суммарной работы, совершаемой при перемещении заряда на этом участке, к величине заряда. Т.е. НАПРЯЖЕНИЕ НА УЧАСТКЕ ЦЕПИ - ЭТО СУММАРНАЯ РАБОТА ПО ПЕРЕМЕЩЕНИЮ ПО УЧАСТКУ ЕДИНИЧНОГО ПОЛОЖИТЕЛЬНОГО ЗАРЯДА.

ЭДС на данном участке называется величина, равная отношению работы, совершаемой неэлектрическими источниками энергии при перемещении заряда, к величине этого заряда. ЭДС - ЭТО РАБОТА СТОРОННИХ СИЛ ПО ПЕРЕМЕЩЕНИЮ ЕДИНИЧНОГО ПОЛОЖИТЕЛЬНОГО ЗАРЯДА НА УЧАСКЕ ЦЕПИ.

Сторонние силы в электрической цепи работают, как правило, в источниках тока. Если на участке цепи имеется источник тока, то такой участок называется неоднородным.

Напряжение на неоднородном участке цепи равно сумме разности потенциалов на концах этого участка и ЭДС источников в нем. При этом ЭДС считается положительной, если направление тока совпадает с направлением действия сторонних сил, т.е. от минуса источника к плюсу.

Если на интересующем нас участке нет источников тока, то в этом и только в этом случае напряжение равно разности потенциалов.

В замкнутой цепи для каждого из участков, образующих замкнутый контур, можно написать:

Т.к. потенциалы начальной и конечной точек равны, то .

Следовательно, (2),

т.е. сумма падений напряжений в замкнутом контуре любой электрической цепи равна сумме ЭДС.

Разделим обе части уравнения (1) на длину участка.

Где - напряженность суммарного поля, - напряженность стороннего поля, - напряженность кулоновского поля.

Для однородного участка цепи .

Плотность тока , значит - закон Ома в дифференциальной форме. ПЛОТНОСТЬ ТОКА В ОДНОРОДНОМ УЧАСТКЕ ЦЕПИ ПРЯМО ПРОПОРЦИОНАЛЬНА НАПРЯЖЕННОСТИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ПРОВОДНИКЕ.

Если на данном участке цепи действует кулоновское и стороннее поле (неоднородный участок цепи), то плотность тока будет пропорциональна суммарной напряженности поля:

. Значит, .

Закон Ома для неоднородного участка цепи: СИЛА ТОКА В НЕОДНОРОДНОМ УЧАСТКЕ ЦЕПИ ПРЯМО ПРОПОРЦИОНАЛЬНА НАПРЯЖЕНИЮ НА ЭТОМ УЧАСТКЕ И ОБРАТНО ПРОПОРЦИОНАЛЬНА ЕГО СОПРОТИВЛЕНИЮ.

Если направление Е c т и Е кул совпадают, то ЭДС и разность потенциалов имеют одинаковый знак.

В замкнутой цепи V=О, т.к. кулоновское поле консервативно.

Отсюда: ,

где R - сопротивление внешней части цепи, r - сопротивление внутренней части цепи (т.е. источников тока).

Закон Ома для замкнутой цепи: СИЛА ТОКА В ЗАМКНУТОЙ ЦЕПИ ПРЯМО ПРОПОРЦИОНАЛЬНА ЭДС ИСТОЧНИКОВ И ОБРАТНО ПРОПОРЦИОНАЛЬНА ПОЛНОМУ СОПРОТИВЛЕНИЮ ЦЕПИ.

ПРАВИЛА КИРХГОФА.

Для рассчета разветвленных электрических цепей применяют правила Кирхгофа.

Точка цепи, в которой пересекаются три и более проводников называется узлом. По закону сохранения заряда cумма токов, приходящих в узел и выходящих из него равна нулю. . (Первое правило Кирхгофа). АЛГЕБРАИЧЕСКАЯ СУММА ТОКОВ, ПРОХОДЯЩИХ ЧЕРЕЗ УЗЕЛ РАВНА НУЛЮ.

Ток, входящий в узел, считается положительным, выходящий из узла - отрицательным. Направления токов в участках цепи можно выбирать произвольно.

Из уравнения (2) следует, что ПРИ ОБХОДЕ ЛЮБОГО ЗАМКНУТОГО КОНТУРА АЛГЕБРАИЧЕСКАЯ СУММА ПАДЕНИЙ НАПРЯЖЕНИЙ РАВНА АЛГЕБРАИЧЕСКОЙ СУММЕ ЭДС В ЭТОМ КОНТУРЕ , - (второе правило Кирхгофа).

Направление обхода контура выбирается произвольно. Напряжение на участке цепи считается положительным, если направление тока на этом участке совпадает с направлением обхода контура. ЭДС считается положительной, если при обходе по контуру источник проходится от отрицательного полюса к положительному.

Если цепь содержит m узлов, то можно составить m-1 уравнение по первому правилу. Каждое новое уравнение должно включать в себя хотя бы один новый элемент. Полное число уравнений, составленных по правилам Кирхгофа, должно совпадать с числом участков между узлами,т.е. с числом токов.