Сопряжение мостов с подходами. Методические рекомендации методические рекомендации по устройству сопряжений автодорожных мостов и путепроводов с насыпью Устройство подходной насыпи моста

Изобретение предназначено для сопряжения моста с насыпью преимущественно автомобильных дорог и может быть применено в мостостроении. Способ изготовления сопряжения проезжей части моста с насыпью включает уплотнение грунта в теле насыпи и ее конусов, устройство дренажных слоев и водоотводных лотков на покрытии, создание подушки с переменной жесткостью, убывающей от моста вдоль насыпи по длине, равной длине переходной плиты, устройство переходной плиты с углом подъема в сторону моста. Новым является то, что подушку в теле насыпи выполняют путем формования рядов набивных свай, размещенных вдоль и поперек насыпи с поверхностным уплотнением верхней части набивных свай и верхнего слоя насыпи, причем поперечные набивные сваи образуют совместно с грунтом, уложенным в насыпи, полосы со средней жесткостью, при этом среднюю жесткость уменьшают от максимальной у устоя моста до минимальной у противоположного от устоя моста края переходной плиты. Технический результат изобретения состоит в уменьшении просадки насыпи под переходной плитой за счет снижения горизонтального смещения подушки и дренирующего материала. 7 з.п. ф-лы, 6 ил.

Предлагаемое изобретение предназначено для устройства сопряжения проезжей части моста с насыпью преимущественно автомобильных дорог и может быть применено в мостостроении.

При сооружении мостов на автодорогах ниже III категории сопряжение моста с насыпью не устраивается (это касается и пешеходных мостов). Со временем в месте сопряжения образуется просадка насыпи, что ухудшает въезд и съезд с моста. Устройство сопряжения исключило бы этот недостаток, однако это связано со сравнительно большими затратами при использовании существующей технологии изготовления сопряжения проезжей части моста с насыпью.

На автодорогах I-III категорий для обеспечения плавного перехода от упругих деформаций насыпи к более жестким деформациям пролетного строения как по их величине, так и по скорости протекания в местах сопряжения моста с насыпью создают специальные переходные участки в виде переходных плит, отмосток и подушек из щебеночных и песчано-гравийных материалов, которые необходимо послойно уплотнять, (Мосты и сооружения на дорогах. Под ред. П.М.Саламахина. М., Транспорт, 1991, ч.1, стр.226). Переходные плиты одним концом опираются на выступ шкафной стенки, а другим - на железобетонный лежень. Плиты укладывают на подушку из дренирующего материала с уклоном 1:10 в сторону насыпи и закрепляют штырями.

Операции, характеризующие описанный выше способ изготовления сопряжения проезжей части моста с насыпью, таковы: осуществляют отсыпку грунта в тело насыпи и ее конусов с послойным уплотнением, устройство дренажных слоев и водоотводных лотков на покрытии, создание подушки в теле насыпи по длине, равной длине переходной плиты с переменной жесткостью, убывающей от моста вдоль насыпи.

Недостатками известного способа сопряжения моста с насыпью являются:

а) возможность сдвига и деформации подушки и дренирующего материала в горизонтальном направлении, что, в конечном счете, приводит к осадке переходной плиты;

б) сложность конструкции сопряжения, связанная с необходимостью использования бетонного лежня, подушек из щебеночных и песчано-гравийных материалов, которые необходимо послойно уплотнять. Это приводит к сравнительно быстрым просадкам насыпи под лежнем. Кроме того, резко усложняется и удорожается производство работ по устройству сопряжения моста с насыпью.

Известен способ сопряжения моста с насыпью на автомобильных дорогах (см., например: Б.И.Скрябин. Сопряжения моста с насыпью на автомобильных дорогах. М., издательство ГУШОСДОРа, 1939, стр.16-17), заключающийся в установке деревянного щита с наклоном 4° в сторону моста, который сверху засыпают песком с устройством мостовой. Недостатком известного способа является небольшая долговечность, связанная с использованием деревянного щита, который под действием нагрузки деформируется, а под действием влаги - гниет. Кроме того, происходит осадка не только под действием вертикальных сил, возникающих от воздействия транспорта, съезжающего или въезжающего на мост, но и от горизонтального перемещения грунта насыпи. Перемещения от вертикальных сил накапливаются, образуя остаточные деформации. Накопление таких деформаций будет происходить тем интенсивнее, чем больше разница в жесткости езды по покрытию и мосту. Определенную роль в формировании деформаций насыпи возле мостов играют конусы земляного полотна. Устойчивость конуса зависит от свойств грунта, применяемого при его отсыпке (дренирующая способность, сохранение объема при промерзании), и угла заложения, что не обеспечивается известным способом сопряжения моста с насыпью.

Известен способ сопряжения моста с насыпью (см., например: М.М.Журавлев. Сопряжение моста с насыпью. Автомобильные дороги, №11, 1968, стр.16-17), заключающийся в устройстве засыпки грунта в прогале между опорой и телом насыпи, его уплотнении, осуществлении дренирующей засыпки и ленточного дренажа. Зону активных деформаций насыпи перекрывают специальными переходными плитами достаточной длины. Для асфальтобетонного покрытия используются заглубленные переходные плиты, для цементобетонного - поверхностные плиты.

Недостатком известного способа является необходимость устраивания повышенной водопроницаемости. Кроме того, рассматриваемый способ сопряжения не обеспечивает переменную жесткость сопряжения от насыпи к мосту. Необходимо при этом береговые опоры выбирать такого типа, чтобы вода из грунтов земляного полотна могла бы отводиться в сторону отверстия моста, то есть имеются ограничения по отношению к выбору береговых опор. Основным недостатком описываемого способа являются осадки под действием вертикальных сил за счет горизонтального смещения подушки и дренирующего материала.

Наиболее близким аналогом по технической сущности и достигаемому результату является способ изготовления сопряжения проезжей части автодорожных мостов с насыпью (М.М.Журавлев. Сопряжение проезжей части автодорожных мостов с насыпью. М., Транспорт, 1976, стр.49-50), заключающийся в отсыпке гравийно-щебеночной подушки, толщину которой определяют расчетом, устройстве дренажных слоев и водоотводных лотков на покрытии, укладке на гравийно-щебеночную подушку лежня, для опоры одного конца переходной плиты, послойном уплотнении грунта в теле насыпи и ее конусов, устройстве гравийно-щебеночной подушки с переменной жесткостью, убывающей от моста вдоль насыпи по длине, равной длине переходной плиты, укладке переходной плиты с углом подъема в сторону моста. Другим концом переходная плита опирается на прилив шкафной стенки (проект Союздорпроекта) или на ее верх (проект Гипроавтотранса). Последнее решение менее эффективно, так как из-за небольшого поворота переходной плиты в вертикальной плоскости происходит расстройство деформационного шва. Шарнирный поворот плит на опоре обеспечивается штыревым соединением.

Недостатками известного способа изготовления сопряжения проезжей части моста с насыпью являются:

а) возможность сдвига и деформации подушки и дренирующего материала в горизонтальном направлении, что приводит к осадке переходной плиты;

б) сложность конструкции сопряжения, связанная с необходимостью использования бетонного лежня, подушек из щебеночного и дренирующего материала, которые необходимо послойно уплотнять;

в) при горизонтальном смещении устоя типовое сопряжение полностью приходит в негодность, так как переходные плиты сдвигаются со шкафной стенки.

Технической задачей, решаемой предлагаемым изобретением, является уменьшение осадки насыпи под переходной плитой, снижение горизонтального смещения подушки и дренирующего материала, упрощение конструкции сопряжения и технологии его изготовления.

Это достигается за счет того, что в способе изготовления сопряжения проезжей части автодорожного моста с насыпью, включающем уплотнение грунта в теле насыпи и его конусов, устройство дренажных слоев и водоотводных лотков на покрытии, создание подушки с переменной жесткостью, убывающей от моста вдоль насыпи по длине, равной длине переходной плиты, устройство переходной плиты с углом подъема в сторону моста, подушку в теле насыпи выполняют путем формования рядов набивных свай, размещенных вдоль и поперек насыпи с поверхностным уплотнением верхней части набивных свай и верхнего слоя насыпи, причем поперечные набивные сваи образуют совместно с грунтом, уложенным в насыпи, полосы со средней жесткостью, при этом среднюю жесткость уменьшают от максимальной у устоя моста до минимальной у противоположного от устоя моста края переходной плиты. Под средней жесткостью насыпи понимается средневзвешенная жесткость, определяемая как соотношение жесткости армоэлемента и окружающего грунта в единице объема насыпи. Такая совокупность операций позволяет использовать набивные сваи вместо укладки переходной плиты (предполагается, что непосредственно на сваях может быть уложено дорожное покрытие), или создавать переменную жесткость насыпи под переходной плитой, обеспечивая жесткость грунта в насыпи в вертикальном направлении за счет несущей способности набивной сваи и в горизонтальном направлении за счет жесткости тела самой сваи. Кроме того, жесткость грунта в теле насыпи повышается за счет глубинного уплотнения грунта, происходящего при формовании набивной сваи. Поверхностное уплотнение верхнего слоя насыпи и набивных свай создает равномерную плотность верхней части набивных свай и окружающего их грунта, что, в конечном итоге, повышает надежность работы конструкции сопряжения моста с насыпью.

Среднюю жесткость насыпи выполняют путем уменьшения количества набивных свай, размещенных в параллельных рядах, по мере удаления от устоя моста. Такая операция позволяет выдержать необходимую среднюю жесткость насыпи, не прибегая к послойной отсыпке гравийно-щебеночных слоев с их послойным уплотнением.

Набивные сваи выполняют с переменной несущей способностью путем изменения их длин и/или диаметров в каждом последующем ряду от устоя моста. Изменение длин набивных свай в каждом последующем ряду от устоя моста обеспечивает переменную жесткость насыпи от опоры моста до края переходной плиты и одновременно такая операция эффективна в технологическом плане, так как позволяет использовать одни и те же средства механизации, например, пневмопробойник, для достижения требуемой жесткости вне зависимости от расположения сваи относительно опоры моста.

Достижение переменной несущей способности набивных свай за счет одновременного изменения их длин и диаметров в каждом последующем ряду от устоев моста позволяет оптимизировать параметры сваи при минимальных технологических затратах и обеспечивать переменную жесткость грунта в насыпи под переходной плитой.

Кроме того, соседние сваи в каждом ряду насыпи выполняют разного диаметра и длины. Такая совокупность операций позволяет оптимизировать технологический процесс, то есть при наличии пневмопробойников разного диаметра можно формовать сваи разного диаметра, достигая необходимую жесткость в соответствующей полосе насыпи.

Также набивные сваи выполняют по контуру насыпи, поперек насыпи у устоя моста и на некотором расстоянии от него. Такая операция существенно повышает жесткость насыпи в горизонтальном направлении, исключает необходимость устройства лежня и повышает устойчивость конуса и откосов.

Также каждый последующий ряд набивных свай размещают соосно предшествующему ряду или в шахматном порядке. Размещение каждого ряда набивных свай соосно предшествующему ряду позволяет достичь максимальной прочности насыпи в месте опирания на нее переходной плиты, а их размещение в шахматном порядке позволяет оптимизировать прочность насыпи и дренирующую ее способность.

Кроме того, переходную плиту монтируют в верхней части набивных свай и выполняют ее съемной. Такая конструкция сопряжения обеспечивает передачу возникающих сил от съезжающего или въезжающего на мост транспорта непосредственно на сваю, что повышает надежность работы сопряжения проезжей части автомобильной дороги и моста, обеспечивая снижение горизонтального смещения подушки и дренирующего материала и существенно снижая затраты на последующий его ремонт.

Также переходную плиту выполняют за одно целое с набивными сваями. Такая операция существенно повысит прочность сопряжения проезжей части насыпи с мостом, что особо важно для мостов I-III категории с интенсивным движением транспорта.

Сущность предлагаемого технического решения иллюстрируется примером конкретного исполнения и прилагаемыми чертежами. На фиг.1 приведена схема предлагаемого способа сопряжения моста с насыпью в продольном сечении; на фиг.2 - вид сверху (переходная плита снята) однорядное размещение набивных свай; фиг.3 - двухрядное размещение набивных свай, когда набивные сваи располагаются соосно, в рядах (вид сверху при снятой переходной плите); фиг.4 - двухрядное размещение набивных свай, когда набивные сваи располагаются в шахматном порядке (вид сверху при снятой переходной плите); фиг.5 - размещение набивных свай по всей площади, занимаемой переходной плитой (вид сверху при снятой переходной плите); фиг.6 - процесс формования набивных свай пневмопробойником.

Сущность предлагаемого способа изготовления сопряжения проезжей части автомобильных мостов с насыпью заключается в следующем.

В насыпи 1 формуют набивные сваи 2 (фиг.1). Их располагают вдоль откоса насыпи 1 и поперек ее (фиг.2-5) с поверхностным уплотнением верхней части набивных свай и верхнего слоя насыпи. Поперечные набивные сваи образуют (совместно с грунтом, уложенным в насыпи 1) полосы со средней жесткостью, определяемой жесткостью грунта и набивных свай. Поперечные ряды располагают у устоя 3 моста 4 и у конца переходной плиты 5, причем средняя жесткость полосы насыпи 1, расположенной непосредственно у устоя 3 моста 4, больше средней жесткости полосы у противоположного от устоя моста края переходной плиты 5. При выполнении переходной плиты 5 съемной она передним концом укладывается на прилив шкафной стенки или устой 3 моста 4, как на фиг.1, а задним концом - на поперечный ряд набивных свай 2, служащий как бы лежнем для удержания переходной плиты 5. Передний ряд набивных свай 2 служит для повышения устойчивости конуса 6 насыпи 1, а следовательно, и устойчивости самой насыпи 1. Набивные сваи 2 можно изготавливать с переменной несущей способностью, причем максимальная несущая способность у ряда свай 2, которые размещены у устоя 3 моста 4, и постепенно их несущая способность снижается по мере удаления от устоя 3 моста 4. Изменение несущей способности набивных свай 2 можно достичь тремя путями. Первый путь - это при одинаковом диаметре набивной сваи 2 изготовлять их разной глубины. Как известно, несущая способность набивной сваи 2 зависит от площади боковой поверхности, поэтому набивные сваи 2 одинакового диаметра, но разной длины, будут иметь разную несущую способность. Второй путь - изготовление набивных свай 2 одинаковой длины, но разного диаметра. Результат тот же. Возможно использовать и комбинированный метод, то есть изготовлять набивные сваи 2 разного диаметра и разной длины, причем это можно выполнять в разных рядах, когда в одном ряду несущая способность набивной сваи изменяется за счет ее длины, в другом ряду - за счет диаметра, или в каждом ряду. В последнем случае набивные сваи 2 чередуются, то есть одна свая формуется длинная, но малого диаметра, другая - короткая, но большого диаметра, Главное, чтобы средняя жесткость полосы насыпи 1 соответствовала бы расчетной. Оптимальное решение зависит от производственных условий (необходимой средней плотности насыпи, физико-механических свойств отсыпанного в насыпь 1 грунта, его дренажных свойств, наличия техники, позволяющей изготовлять набивные сваи необходимой длины и диаметра) и минимизации трудовых и финансовых затрат. Набивные сваи 2 можно располагать в один ряд по контуру (фиг.2) или в несколько рядов, располагая их соосно друг относительно друга в горизонтальной плоскости (фиг.3), или в шахматном порядке (фиг.4). Возможен вариант расположения набивных свай 2 по всей горизонтальной поверхности сопряжения, как показано на фиг.5. Этот случай целесообразно применять при строительстве мостов, интенсивность движения по которым мала. При этом можно вообще обойтись без использования переходных плит. Непосредственно на верхнюю часть набивных свай укладывается дорожное покрытие. В этом случае сами набивные сваи выполняют функцию переходной плиты. Если мост более высокой категории с интенсивным движением транспорта, то возможна заливка бетоном верхней части набивных свай с последующим бетонированием переходной плиты. В итоге, переходная плита будет выполнена с набивными сваями как единое целое. Возможно выполнение съемной переходной плиты, которая свободно укладывается на торцы набивных свай (эти операции описаны выше). Выбор того или иного способа изготовления сопряжения (в виде укладки покрытия на поле набивных свай, объединения бетонной плиты с оголовками свай, устройства съемной переходной плиты) зависит от категории автомобильной дороги и моста, условий их эксплуатации, производственных условий.

При формировании набивных свай верхняя их часть становится разуплотненной. Свойства грунта вокруг свай также меняются из-за возможного подъема поверхности насыпи при формовании набивных свай. Поэтому целесообразно провести поверхностное уплотнение для выравнивания свойств грунта, прилегающего к поверхности и верхней части набивных свай, перед укладкой переходной плиты.

Оптимальное расположение набивных свай 2 зависит от производственных условий, выбранного диаметра набивных свай 2, площади сопряжения моста 4 с насыпью 1, то есть от длины переходной плиты. Важным моментом является обеспечение возможности удаления воды, которая образуется в результате дождевых осадков или таяния снега, сквозь зазоры между соседними набивными сваями 2, что достигается выбором расстояния между ними.

Метод изготовления набивных свай 2 может быть любым. Наиболее целесообразно использовать для этой цели пневмопробойник - самодвижущееся устройство ударного действия для формования скважин в уплотняемом грунте. На фиг.6 показана технология поэтапного процесса формования набивной сваи 2. На фиг.6 а показана операция по внедрению пневмопробойника 7 в насыпь 1. После прохождения скважины 8 необходимой длины пневмопробойник извлекается из нее за счет реверсирования своего хода. Образованная скважина 8 (фиг.6б) имеет прочную стенку за счет радиального сдвига грунта и уплотнения последнего. В результате происходит радиальное уплотнение грунта на объем, занимаемый объемом скважины 8. Следующей операцией является заполнение скважины 8 инертным материалом 9, в качестве которого может быть использованы песок, щебень и т.д. В принципе на этом можно ограничиться, т.к. набивная свая 2 уже образована. Однако если необходимо образовать скважину, а следовательно, и набивную сваю большего диаметра при использовании пневмопробойника 7 того же диаметра (той же мощности), то процесс формования набивной сваи 2 необходимо продолжить. По заполненной инертным материалом 9 скважине 8 осуществляют повторную проходку (фиг.6г), при этом образуется скважина 8 того же диаметра, что и диаметр корпуса пневмопробойника 7. Стенки скважины 8 больше уплотнены, чем окружающий ее грунт 1, то есть образуется как бы кольцевой слой с более уплотненным грунтом. Затем полость скважины 8 заполняют инертным материалом (фиг.6е), в результате чего образуется набивная свая 2 большего диаметра, а следовательно, с большей несущей способностью. Можно вновь осуществить проходку пневмопробойником 7 по заполненной скважине (фиг.6ж) и далее процесс можно повторить, начиная с операции, показанной на фиг.6г. В результате образуется набивная свая 2 еще большего диаметра. Практически была получена набивная свая 2 диаметром 500 мм при пятиразовой проходке пневмопробойником ИП4603 диаметром 130 мм. Скважину большего диаметра можно также образовать, используя расширители с более мощным пневмопробойником. Здесь вопрос наличия более мощных пневмопробойников и минимизации трудовых и капитальных затрат.

После формования сетки набивных свай 2 и выравнивания свойств верхней их части и окружающего грунта на торцы набивных свай укладывается переходная плита 5, которая в дальнейшем и опирается на них.

Круглая свая имеет одинаковую жесткость во всех направлениях, поэтому она обеспечивает одинаковое сопротивление при нагрузках в любом направлении. Это свойство обеспечивает как устойчивость откосам и конусам, так и необходимую жесткость насыпи 1 под переходной плитой 5, что повышает долговечность сопряжения моста 4 с насыпью 1. Расстояние между соседними набивными сваями 2 подбирается таким образом, чтобы обеспечивался дренаж воды, скопившейся в теле насыпи 1. Уменьшение жесткости поперечных полос насыпи 1 можно достичь за счет уменьшения несущей способности набивных свай 2 от моста 4 в сторону насыпи 1, следовательно, обеспечивается плавный переход деформаций как по величине, так и по скорости их протекания.

1. Способ изготовления сопряжения проезжей части моста с насыпью, включающий уплотнение грунта в теле насыпи и ее конусов, устройство дренажных слоев и водоотводных лотков на покрытии, создание подушки с переменной жесткостью, убывающей от моста вдоль насыпи по длине, равной длине переходной плиты, устройство переходной плиты с углом подъема в сторону моста, отличающийся тем, что подушку в теле насыпи выполняют путем формования рядов набивных свай, размещенных вдоль и поперек насыпи с поверхностным уплотнением верхней части набивных свай и верхнего слоя насыпи, причем поперечные набивные сваи образуют совместно с грунтом, уложенным в насыпи, полосы со средней жесткостью, при этом среднюю жесткость уменьшают от максимальной у устоя моста до минимальной у противоположного от устоя моста края переходной плиты.

2. Способ по п.1, отличающийся тем, что среднюю жесткость насыпи выполняют путем уменьшения количества набивных свай в параллельных рядах по мере удаления от устоя моста.

3. Способ по любому из пп.1 и 2, отличающийся тем, что набивные сваи выполняют с переменной несущей способностью путем изменения их длин и/или диаметров в каждом последующем ряду от устоя моста.

4. Способ по любому из пп.1-3, отличающийся тем, что соседние сваи в каждом ряду насыпи выполняют разного диаметра и длины.

5. Способ по п.1, отличающийся тем, что набивные сваи выполняют по контуру насыпи – поперек насыпи у устоя моста и на некотором расстоянии от него.

6. Способ по любому из пп.1-4, отличающийся тем, что каждый последующий ряд набивных свай размещают соосно предшествующему ряду или в шахматном порядке.

7. Способ по любому из пп.1-6, отличающийся тем, что переходную плиту монтируют в верхней части набивных свай и выполняют ее съемной.

8. Способ по любому из пп.1-6, отличающийся тем, что переходную плиту выполняют за одно целое с набивными сваями.

Способ изготовления сопряжения проезжей части моста с насыпью

Сопряжение с подходами - это конструктивное выполнение узла примыкания мостового сооружения к насыпи подхода за устоем.

Главнейшим условием устройства сопряжений моста с насыпью является обеспечение плавности въезда автомобилей с подходов на мост на весь период эксплуатации дороги.

Проектирование переходных плит исходит из следующих условий:

Длины плит принимают в зависимости от высоты насыпи: при высоте насыпи 2-4 м – 4 м, при высоте 4-7 м – 6 м, при большей высоте – 8 м.

Переходные плиты должны быть уложены на полную ширину пролетного строения. В пределах тротуаров укладывают плиты укороченной длины, равной 2 м.

Плиты одним концом опирают на прилив шкафной стенки (опираниена верх шкафной стенки не допустимо), другим концом – на лежень.

Расстояние от поверхности покрытия до верха переходной плиты у ее заглубленного конца принимают не менее 45 см.

Переходные плиты могут быть выполнены как в сборном, так и в монолитном варианте. Бетон плит принимают класса В30 по ГОСТ 26633 с маркой по водонепроницаемости W8 по ГОСТ 12730.5 и морозостойкостью F300 по ГОСТ 10060.

Опирание лежня производят на щебеночную подготовку из фракционированного щебня толщиной не менее 40 мм.

Часть насыпи за устоями и конусы отсыпают из дренирующего грунта, с коэффициентом фильтрации не менее 2-3 м/сутки.

Типы сопряжений:

Щебеночно-песчаный клин Применяется в старых баночных мостах малых пролетов с опиранием балок без опорных частей. Перемещение пролетного строения относительно опоры исключается
Переходная плита поверхностного тина Плита укладывается параллельно отметкам проезжей части непосредственно на поверхность земляного полотна
Переходная плита полузагубленная Устраивается при асфальтобетонном покрытии на жестком основании или полужестком с наклоном 1:8 и заглублением концов до 50 см
Переходная плита заглубленная Устраивается при асфальтобетонном покрытии на жестком основании с наклоном 1:12 и заглублением концов до 70 см

Асанбаев Р. 2АД-403

Чем больше ширина промежуточной опоры и её массивность, тем больше нарушается естественный сток воды.

При нормальной работе подмостового русла не происходит резких изменений его положения в плане в пределах мостовых переходов, не подмываются опоры, конуса насыпей и регуляционные сооружения. С этой целью на больших и средних мостах устраивают струенаправляющие дамбы для организации движения водного потока на входе и выходе с низовой зоны моста


Возможные причины нарушения нормальной работы подмостового русла:

1. Недостаточное отверстие моста между точками пересечения с конусами за вычетом ширины опор по верхнему уровню воды;

2. Ошибки проектирования;

4. Неудовлетворительное укрепление откосов, конусов насыпи, дна реки.

Для выявления причин нарушения нормального состояния подмостового русла и неудовлетворительной работы регуляционных сооружений необходимо иметь полные, достоверные статистические данные об условиях протекания воды, паводках, ледоставе и ледоходе. Условия протекания характеризуются горизонтами воды (высоким и меженным) и соответствующими им направлениями течения. При обследовании подмостового русла проверяют его положение в плане (угол косины), профиле и наличие отклонений.

Особенно опасно различные подмывы опор, размывы берегов вблизи насыпей и регуляционных сооружений. В процессе наблидения за профилем дна реки промеряют глубину русла по оси моста и на расстоянии 25 м выше и ниже по течению- зимой перед паводком и весной после спада высокой воды.

В подмостовой зоне на расстоянии 50 м выше и ниже моста не должно прорастать растительности, т. к. это нарушает свободное течение воды и проветриваемость конструкций подмостовой зоны.

Если русло устойчивое, то глубину промеряют только по оси моста; если русло неустойчивое, то промеры выполняют на большом числе створов и вокруг опор. В каждом створе точки промера выбираются таким образом чтобы можно было получить ясное представление о профиле дна реки. При отверстии моста более 50 м – глубину промеряют через каждые 10 м, менее 50 м – через каждые 5 м. Глубину русла измеряют с моста или лодки различными способами: при большой глубине – с помощью тонкого стального троса или веревки с грузом; при очень большой глубине и сильном течении – с помощью эхолота, тогда должны быть выполнены толеровочные кривые; при небольшой глубине – с помощью реек, на нижних концах которой закреплен поддон. На незатопляемых участках профиль русла в створе внимают нивелиром. Результаты промеров привязывают к разделительной полосе и представляют в виде поперечных профилей русла реки, которые для наглядности вычерчивают в разных масштабах (по высоте откладываются в более крупном масштабе)

Таким образом сравнивая профиль, снятых в различное время за период эксплуатации, устанавливают изменения и выявляют места и величины размывов.

Из опыта видно, что большая часть нарушений нормальных условий эксплуатации дорог связано с пропуском паводковых вод через искусственные сооружения, приходящиеся на малые водотоки, т.к. поводки на малых водотоках формируются при выпадении дождей и их трудно заранее предсказать.

Основные виды повреждений переходов через малые водотоки происходят в период паводков: размывы земляного полотна и выходных русел сооружений. Главные причины таких повреждений это возникновение при пропуске паводковых вод чрезмерного подпора перед малыми мостами и трубами из-за недостаточности их отверстий или возникновения наносов грунта в сооружениях и водоотводах. При возможном переливе воды происходят наиболее опасные размывы земляного полотна.

Опасный подпор воды в зоне малых искусственных сооружений может возникнуть из-за недостаточности возвышения низа пролетных строений над РУВВ. Согласно норм проектирования низ пролетных строений должен возвышаться над РУВВ в зависимости от технической категории автомобильной дороги не менее, чем на 0,5-0,75 м; при наличии корчехода – не менее 1,0 м; над максимальным уровнем – не менее 0,25 м.

Строительство моста и других искусственных сооружений с подходами насыпей нарушает свободный режим протекания воды (ламинарный режим) и возникает напорный режим с большими скоростями в паводковый период. В это время наиболее опасны участки к разрушению, размывам земляного полотна и конусов береговых опор. Когда железобетонные укрепления конусов береговых опор выполняют из крупноразмерных и мелкоразмерных плит, тот высокой водой уносит на 30-40 м ниже моста.

Аналогично происходит разрушение упорных брусьев в основаниях конусов береговых опор.

Целесообразно упорные брусья выполнять из армированного монолитного бетона с анкеровкой. Укрепления конусов опор целесообразно (дешевле) выполнять из армированной железобетонной плиты толщенной 8-10 см с обязательным устройством дренирующего слоя.

Местные размывы русел (у промежуточных опор) вызывают подмыв промежуточных опор и таким образом особенно опасны для сооружения в целом. Могут наблюдаться деформации неравномерных осадок промежуточных опор по длине моста, самой опоры по ширине моста. Возможные отклонения опор от вертикали приводит к увеличению эксцентриситета приложений нагрузки и возможна потеря устойчивости отдельных стоек опор. В ряде случаев это приводит к обрушению пролетных строений.

Вывод: все деформации, выявленные после прохождения паводка в подмостовой зоне, необходимо устранить в течении строительного сезона до наступления заморозков; выполнить ремонт конусов; привести в проектное укрепления; размывы грунта заполнить скальным грунтом; вычистить русло от наносов грунта, корчехода, камней и других предметов; убрать растительность выше и ниже моста.

В последние 15-20 лет заметно возросли скорости движения на автомобильных дорогах, при этом обнаружилось, что наиболее резкие толчки автомобили испытывают на подходах к мостам и над водопропускными трубами, где, как правило, наблюдаются просадки покрытия.

По данным некоторых исследователей, неровности дороги и связанные с ними колебания автомобилей приводят к резкому снижению скорости движения производительности транспортных средств, а также к увеличению себестоимости перевозок. Учитывая, что в среднем на каждый километр дороги приходится мост или труба, значительную долю приведенного ущерба следует отнести за счет деформаций насыпи возле искусственных сооружений.

Просадки у мостов и над трубами небезопасны для транспорта, движущегося с большой скоростью. Поэтому при строительстве мостов и путепроводов на автомобильных дорогах особое внимание должно быть уделено сопряжениям их с насыпью.

В связи с этим Союздорнии последние годы проводил исследования по совершенствованию конструкций сопряжений мостов с насыпью с производством инструментальных обследований существующих сооружений.

Настоящие "Методические рекомендации по устройству сопряжений автодорожных мостов и путепроводов с насыпью" составлены на основе этих исследований, в них приводятся необходимые мероприятия по совершенствованию конструкций сопряжений мостов и путепроводов с насыпью и технология их строительства; причины деформаций дорожных покрытий возле мостов.

Необходимые условия проектирования и строительства сопряжений

1. Главнейшим условием устройства сопряжений моста с насыпью является обеспечение плавности въезда автомобилей с подходов на мост на весь период эксплуатации дороги.

Критерием обеспечения плавности покрытия у моста являются допустимые вертикальные ускорения, которые испытывает автомобиль при проходе неровности. Величины этих ускорений связываются с физиологией человека и с сохранностью перевозимых грузов. Так, при ускорении (0,2 ¸ 0,5) q , где (q - ускорение силы тяжести, равное 9,81 м/сек 2 ) работа в автомобиле невозможна; такое ускорение терпимо в течение одной минуты. Сохранность груза в кузове автомобиля обеспечивается при ускорении, не превышающем (0,6¸ 0,7) q.

При одной и той же неровности величина ускорения будет разной в зависимости от типа автомобиля (легковой, автобус, грузовой), степени его загрузки и скорости движения. Наибольшие ускорения (0,7¸ 1,0) q допускают для грузовых автомобилей, эксплуатируемых в тяжелых дорожных условиях.

2. Неровность характеризуют углами перелома профиля покрытия. В частности, при въезде на мост по наклонной переходной плите автомобиль испытывает толчки на двух переломах профиля: у начала переходной плиты (вогнутый угол перелома) и у конца ее - на устое (выпуклый угол перелома). При скорости движения легкового автомобиля 60 км/час вогнутый угол перелома допустим до 12 ‰; при скорости 100 км/час он не должен превышать 5 ‰.

* Причины деформаций дорожного покрытия возле мостов пояснены в приложении 1 .

3. Для обеспечения плавного въезда автомобиля на мост при устройстве сопряжения его с насыпью необходимо:

а) обеспечить надлежащую плотность грунтов земляного полотна (коэффициент уплотнения грунтов при оптимальной влажности не должен быть менее 0,98-1,0);

б) устроить надежный отвод поверхностных вод с покрытия и из тела земляного полотна, что достигается применением дренирующей засыпки за опорами и в конусах, дренажных слоев под покрытием, устройством бортовых лотков и противофильтрационной защиты покрытия и обочин в пределах сопряжения;

в) выдержать земляное полотно до укладки покрытия не менее года, в течение которого произойдут основные осадки тела и основания насыпи;

г) уложить переходные плиты длиной, достаточной для перекрытия зоны образования местных просадок и для обеспечения плавного сопряжения проезжей части моста с дорожным покрытием.

4. Сопряжения проектируют в соответствии с "Проектом конструкций сопряжений мостов и путепроводов с насыпью", разработанным ГПИ "Союздорпроект" (рабочие чертежи, инв. № 20296-М) и утвержденным Минтрансстроем для опытного применения в 1971-1973 гг. Могут быть также использованы "Нормали сопряжений", разработанные Гипроавтотрансом Министерства строительства и эксплуатации автомобильных дорог РСФСР в 1969 г. (серия 3.503-16).

5. Для проектирования сопряжения необходимы следующие данные:

инженерно-геологический разрез грунтов, слагающих основание насыпи вблизи моста, с физико-механическими характеристиками их (в том числе компрессионные кривые), необходимыми для прогноза осадки основания;

высота насыпи, ширина ее поверху и заложение откосов;

физико-механические характеристики грунтов, применяемых для отсыпки насыпи (в том числе для дренирующей засыпки за опорами и конусов);

конструкция дорожной одежды.

6. Конечную осадку уплотненного земляного полотна принимают в зависимости от грунтов и высоты насыпи по табл. 1 (данные В.Д. Казарновского и Н.И. Вельмакиной), а конечную осадку основания насыпи рассчитывают по известным способам механики грунтов ("Методические указания по проектированию земляного полотна на слабых грунтах", М., Оргтрансстрой, 1968).

Таблица 1

Грунты насыпи

Осадка насыпи, % Н нас при высоте насыпи, м

до 6

до 12

до 24

Глины

0,6-0,8

1,0-1,3

1,9-2,2

Суглинки

Супеси

При расчетах осадок на второй год после отсыпки земляного полотна можно принимать осадку тела насыпи 50 %, а основания - 75 % от полной.

Конструкции сопряжений

7. В конструкцию сопряжений входит часть земляного полотна за береговой опорой моста (отсыпаемая из дренирующего грунта), заканчивающаяся объемлющим опору конусом. Дорожное покрытие в этом месте устраивают в виде переходных плит.

8. В зависимости от материала покрытия подходов применяют три типа переходных плит: при цементобетонном покрытии - поверхностные плиты (рис. 1, а), при асфальтобетонном - полузаглубленные и заглубленные (рис. 1, б, в).

9. Полузаглубленные плиты применяют при асфальтобетонных покрытиях, устраиваемых на жестком и полужестком основаниях. К жесткому относится цементобетонное основание; к полужесткому - основания из каменных материалов, укрепленных цементом, гранулированным доменным шлаком, молотым шлаком, золой уноса и др.

10. Заглубленные плиты укладывают при асфальтобетонных покрытиях, устраиваемых на нежестких основаниях: основания из битумоминеральных материалов, из слабых каменных материалов или щебня из шлака, обработанных жидким битумом, из каменных материалов или щебня из шлака с розливом битума или обработанных битумом методом пропитки.

11. Глубину укладки от поверхности покрытия до верха переходной плиты у опирания ее на шкафную стенку (а) и на конце плиты (б) принимают по табл. 2.

Таблица 2

Рис.1. Конструкция сопряжения моста с насыпью:

а - при цементобетонном покрытии: б и в - при асфальтобетонном покрытии (б - полузаглубленная,. в - заглубленная плита); 1 - промежуточная плита; 2 - переходная плита; 3 - крупно- и среднезернистый песок; 4 - дренирующий грунт, 5 - гравийно-щебеночная подушка; 6-укрепленный грунт или асфальтобетон

12. Длину переходных плит назначают в зависимости от ожидаемых осадок тела и основания земляного полотна.

При недостаточности данных о физико-механических характеристиках грунтов длину плит принимают в зависимости от высоты насыпи и гидрогеологических условий ее основания по табл. 3.

Таблица 3

Высота насыпи, м

Длина плит, м, при грунтах основания насыпи

малосжимаемых

повышенной сжимаемости

Более 8

К малосжимаемым грунтам (см. табл. 3) относятся

пески влажные и насыщенные водой, супеси слабовлажные, суглинки твердопластичные и т.п.; к грунтам повышенной сжимаемости - супеси влажные, суглинки тугопластичные и т.п.

13. Наклон переходных плит (вогнутый угол перелома) после окончания осадок тела и основания насыпи не должен превышать величин, указанных в п. 1.

14. При слабых глинистых грунтах в основании насыпи проезжей части на участке переходных плит и прилегающей части подхода придается строительный подъем по треугольнику. Максимальная ордината строительного подъема располагается над концом переходной плиты (над лежнем) и принимается равной ориентировочно 0,7 % от высоты насыпи. Разгон строительного подъема в сторону от моста осуществляется на длине, равной двум высотам насыпи.

При устройстве поверхностных плит строительный подъем достигается повышенным положением лежня. При полузаглубленных и заглубленных плитах строительный подъем устраивается за счет разной толщины основания покрытия.

15. Переходные плиты устраивают либо сборными, либо сборно-монолитными (поверхностные плиты - только сборно-монолитными); с точки зрения водонепроницаемости покрытия и меньшего веса блоков предпочтительнее применение сборно-монолитных плит.

Наружным концом переходные плиты опираются на лежень - обязательный конструктивный элемент при сборных плитах, укладываемый на тщательно уплотненную гравийно-щебеночную подушку толщиной не менее 0,4 м. Сборные плиты объединяются между собой шпоночным швом с постановкой проволочной спирали. Сверху швы между плитами заполняют битумной мастикой.

16. Поверхности переходных плит, соприкасающиеся с землей, и лежень должны быть покрыты обмазочной гидроизоляцией.

17. Для устройства дренирующей засыпки за опорами и конусов применяют грунты и материалы, не увеличивающиеся в объеме при замерзании: крупный и средний песок, мелкий непылеватый песок (частиц менее 0,1 мм не более 25 %), шлак металлургический. Коэффициент фильтрации дренирующего грунта после уплотнения до коэффициента К = 0,98 должен быть не менее 2 - 3 м/сутки.

18. В пределах переходных плит дорожное покрытие должно быть водонепроницаемым (из двух слоев асфальтобетона общей толщиной не менее 7 см), устраиваемым в соответствии с «Рекомендациями по устройству асфальтобетонных покрытий повышенной водонепроницаемости на мостах» (Союздорнии, 1966).

19. При сборно-монолитных плитах поверхностного типа взамен укладки слоев асфальтобетона для изготовления верхней (монолитной) части плиты используют бетон повышенной плотности с воздухововлекающими, газообразующими или уплотняющими добавками, вводимыми с водой затворения согласно требованиям ВСН 85-68 .

20. Поверхностные воды с покрытия должны быть отведены за пределы сопряжений продольными лотками и сброшены по поперечным лоткам, устраиваемым на откосе насыпи. Для этого насыпь возле мостов на протяжении 20 м уширяют по 0,75 м с каждой стороны.

21. Обочины земляного полотна в пределах переходных плит плюс 4 м укрепляют асфальтобетоном или грунтом, обработанным вяжущим.

22. Объемы работ на устройство одного сопряжения для габарита моста Г-9 при разных типах покрытия и длине переходных плит 4 и 6 м (проект Союздорпроекта 1970 г.) приведены в табл. 4.

Таблица 4

Наименование элементов конструкции

Объем работ при длине плит, м, для типа покрытия

асфальтобетонного

цементобетонного

Сборный или сборно-монолитный железобетон М-300, м 3 .

15,5

24,4

15,5

24,4

Покрытие проезжей части, м

Гравийно-щебеночная подушка под лежень, м 3

Укрепленный грунт обочин, м 3.

Технология работ

23. Строительство береговых опор мостов и путепроводов должно опережать возведение земляного полотна, устройство которого производится без разрыва потока линейных земляных работ. Это требование распространяется и на крупные мосты с длительными сроками производства работ.

24. При свайно-эстакадной конструкции моста рекомендуется предварительно (до забивки свай) отсыпать часть насыпи из дренирующего грунта. Это позволит сократить разрыв между сроком окончания сооружения земляного полотна подходов и сроком строительства моста. Размеры призмы из дренирующего грунта поверху должны быть достаточными для обеспечения фронта работ уплотняющих машин и установки копра.

25. Сопряжения строят в четыре этапа:

а) При свайных опорах (рис. 2) отсыпают призму из дренирующего грунта с послойным уплотнением до коэффициента 0,98-1,0 м и забивают в нее сваи береговой опоры. При высоте насыпи до 3 м высота призмы принимается на 2 м меньше, т.е. Н нас - 2 м, а при высоте насыпи 4 - 6 м высота призмы на 3 м меньше, т.е. Н нас - 3 м.

При высоте насыпи более 6 м высота призмы определяется наличием копрового оборудования - возможностью погружения концов свай на глубину не менее 4 м ниже подошвы призмы.

б) При стоечных опорах (рис. 2, б) и опорах других конструкций возводится фундамент и основная часть стоечной опоры.

II этап. Земляное полотно подходов на всю высоту возводят сразу же после сооружения береговых опор. Вблизи моста земляное полотно и конуса отсыпают из дренирующего грунта с послойным его уплотнением малогабаритными механизмами, в удалении (2 м и более) - местным грунтом, уплотняемым тяжелыми машинами.

Рис. 2. Схемы технологической последовательности работ при устройстве сопряжений:

а - при свайных береговых опорах моста; б - при стоечных опорах;

1-стреловый кран с копровым оборудованием; 2-дренируюшнй грунт; 3-переходная плита; 4-подушка под лежень; 5-временное щебеночное покрытие; 6-зона уплотнения малогабаритными механизмами; 7-то же тяжелыми уплотняющими машинами

Одновременно отсыпают и уплотняют гравийно-щебеночную подушку под лежень переходных плит. Осуществляют систематический контроль за уплотнением, отбором проб и определением влажности и плотности грунта вблизи моста, на конусе и в 50 м от моста и регистрируют в "Журнале контроля уплотнения".

После возведения земляного полотна на всю высоту дальнейшую последовательность работ в III и IV этапах принимают в зависимости от типа покрытия (типа переходных плит).

а) Цементобетонное покрытие - поверхностные плиты. В пределах плит плюс 8 м устраивают временное покрытие из щебня или каменной мелочи, эксплуатируя его в течение года.

б) Асфальтобетонное покрытие - полузаглубленные и заглубленные плиты. Роют траншеи под опорный лежень и котлован под переходные плиты. Укладывают лежень; втрамбовывают в котлован 5-см слой щебня и укладывают переходные плиты. В пределах переходных плит плюс 10 м устраивают временное покрытие из щебня или каменной мелочи, эксплуатируя его в течение года.

а) Цементобетонное покрытие - поверхностные плиты. Удаляют верхний загрязненный слой временного покрытия; при необходимости досыпают основание дорожной одежды до проектной отметки и уплотняют его до К = 0,98¸ 1,0. Роют траншеи под опорный лежень и котлован под переходные плиты. Укладывают лежень; втрамбовывают в котлован 5-см слой щебня, укладывают переходные и промежуточные плиты и постоянное цементобетонное покрытие. Устраивают водоотводные лотки и укрепляют обочины.

б) Асфальтобетонное покрытие - полузаглубленные и заглубленные плиты. Удаляют верхний загрязненный слой временного покрытия; досыпают основание дорожного покрытия до проектной отметки и уплотняют его до К = 0,98¸ 1,0. Укладывают постоянное асфальтобетонное покрытие. Устраивают водоотводные лотки и укрепляют обочины.

Составляют акт на скрытые работы по устройству сопряжений (приложение 2).

26. Строительство береговых опор в прогалах земляного полотна допускается как исключение при надлежащем технико-экономическом обосновании такого решения. При этом размеры прогала в насыпи для обеспечения равномерной осадки основания земляного полотна на подходах к мосту должны быть достаточно большими - не менее двух высот насыпи в каждую сторону от моста. Грунт для засыпки прогала (за пределами дренирующей засыпки) должен быть однородным с грунтом прилегающей насыпи.

27. Грунт дренирующей засыпки и конусов уплотняют при оптимальной влажности послойно до коэффициента уплотнения 0,98¸ 1,0. Толщину слоев принимают в зависимости от используемых механизмов (см. табл. 22 ВСН 97-63). При ручном уплотнении толщина слоев должна быть не более 10-15 см.

При наличии водоемов вблизи трассы целесообразно грунт дренирующей засыпки и конусов перед уплотнением поливать водой, увеличивая влажность грунта против оптимальной на 20 %. При этом можно несколько увеличить толщину уплотняемых слоев.

Систематически контролировать уплотнение путем отбора проб и определения плотности и влажности грунта. Плотность грунта определяют методом кольца с режущим краем, а влажность - методом высушивания до постоянного веса.

Плотность и влажность грунтов с каждой стороны моста определяют на каждом метре высоты отсыпанной насыпи в трех местах: 1) на расстоянии 2-3 м от береговой опоры; 2) на конусе и 3) на расстоянии 50 м от моста. В последнем случае плотность и влажность определяют по двум пробам, взятым на горизонте, примерно равным половине высоты насыпи, и на 0,7 м от ее верха.

28. При устройстве щебеночной подушки под лежень переходных плит и щебеночного основания под плиты особое внимание следует обратить на тщательное уплотнение щебня. Нижний слой щебня толщиной 6 см должен быть втрамбован в грунт. Контроль качества уплотнения щебеночных оснований осуществляют в соответствии с указаниями § 6,6 - 6,9 СНиП III-Д.5-62.

29. Поверхностные переходные плиты укладывают одновременно с устройством покрытия, т.е. через год после возведения земляного полотна.

Полузаглубленные и заглубленные переходные плиты укладывают в один год с возведением земляного полотна, а покрытие в пределах плит - через год. В случае постройки моста в прогале насыпи, возводимой на грунтах повышенной сжимаемости, полузаглубленные и заглубленные плиты укладывают через год после засыпки прогала.

При возведении насыпей на сжимаемых грунтах и необходимости открыть движение до истечения годовой выдержки земляного полотна с разрешения инстанции, утвердившей проект, допускается:

устройство гравийного или щебеночного покрытия на подходах к мосту (на длине не менее двух высот насыпи) с укладкой переходных плит после досыпки и доуплотнения верхней части насыпи через год;

временная укладка переходных плит поверхностного типа с последующей съемкой их через год для досыпки и доуплотнения верхней части насыпи и установкой плит в проектное положение.

В обоих случаях в сметах на строительство объектов должны быть предусмотрены средства на окончание работ по устройству сопряжения моста (путепровода) с насыпью.

30. Отдельные этапы устройства сопряжения моста с насыпью регистрируют в журнале работ. После окончания работ по устройству сопряжений составляют акт на скрытые работы (см. приложение 2), в котором указывают плотность грунтов земляного полотна, тип и конструкцию переходных плит (поверхностные, заглубленные, полузаглубленные, сборные, сборно-монолитные плиты), длину плит и соответствие выполненных работ проекту.

К акту прикладывают выписку из журнала контроля уплотнения грунта и нивелировочные профили в пределах длин переходных плит плюс 10 м (с каждой стороны моста), в отметках, увязанных с репером строительства.

Нивелировочные профили прокладывают по оси каждой из полос движения; отметки (в мм) берут на каждом метре длины профиля.

Конструкция сопряжения моста с насыпью должна быть показана на исполнительном чертеже общего вида моста (путепровода).

После сдачи моста в эксплуатацию строительные, эксплуатационные и проектные организации в течение 3 лет и более ведут наблюдения за состоянием конструкций сопряжений. Материалы наблюдений и предложения по совершенствованию конструкций для обобщения направляются в Союздорнии.

ПРИЛОЖЕНИЯ

Приложение 1

ПРИЧИНЫ ДЕФОРМАЦИЙ ДОРОЖНОГО ПОКРЫТИЯ ВОЗЛЕ МОСТОВ

Земляное полотно автомобильных дорог испытывает деформации, возникающие вследствие уплотнения (консолидации) грунтов как самого тела насыпи, так и ее основания. Этот вид деформаций, проявляющихся на всем протяжении дороги, принято называть общими осадками земляного полотна.

Кроме деформаций консолидации под действием колесной нагрузки, при определенных условиях в верхней части насыпи возле мостов образуются местные просадки (рис. 1).

Рис. 1. Деформация насыпи возле моста: ΔН = Δ h H + Δ h 0 ;

обычно Δ h 0 > Δ h H ,

где ΔН - полная осадка насыпи;

Δ h H и Δ h 0 - осадка тела и основания насыпи;

Δ h М - местная просадка насыпи возле моста

Общие осадки земляного полотна зависят от рода грунтов, слагающих и подстилающих насыпь, высоты насыпи, дорожно-климатической зоны, степени уплотнения грунтов насыпи, интенсивности обращающихся нагрузок и срока эксплуатации дороги. Местные просадки земляного полотна зависят от тех же факторов и, кроме того, от формы продольного профиля и типа покрытия дороги, от типа береговых опор и крутизны откосов конусов * .

В величинах общих осадок земляного полотна превалирующее место занимают осадки основания насыпи. При существующих требованиях к плотности грунтов насыпи осадки ее основания могут превосходить осадки тела более чем в 3 раза. Так, насыпь высотой до 6 м, сложенная из суглинистых грунтов, уплотненных до К = 1,0, даст осадку около 0,5 % от высоты насыпи, в то время как ее основание, сложенное из твердопластичных суглинков, даст осадку 1,5-2 % от высоты насыпи.

Местные просадки земляного полотна возле мостов меньше общих осадок. В их возникновении, помимо срока эксплуатации дороги, существенную роль играет водно-тепловой режим земляного полотна. На длительно эксплуатирующихся дорогах (10-15 лет), когда деформации консолидации грунтов закончены, величины местных просадок составляют от 0,3 % в IV дорожно-климатической зоне до 1 % от Н нас во II зоне. Форма местных просадок близка к синусоиде, а длина их колеблется от 0,5 до 2,0 от Н нас.

На вогнутом профиле дороги, когда сток воды с покрытия направлен к мосту, местные просадки больше, чем на выпуклом. Это свидетельствует о необходимости обязательного водоотвода с покрытия и с обочин дороги возле моста.

* Журавлев М.М. Сопряжение моста с насыпью. - "Автомобильные дороги", 1968, № 11.

Местные просадки зависят от типа береговых опор моста, они больше при массивных устоях с обратными стенками или при устоях со сплошными заборными стенками. Это объясняется нарушением дренирования воды из тела насыпи в сторону отверстия моста, которое создает такие опоры.

Менее устойчивые конуса, с крутым заложением откосов, также увеличивают местные просадки.

Формирование общих и местных деформаций земляного полотна возле мостов связано со временем.

Общие осадки тела и основания земляного полотна происходят неравномерно, они более интенсивны в первые месяцы после возведения насыпи, затем интенсивность их падает. При наиболее часто употребляемых в дорожном строительстве грунтах (пылеватые супеси и суглинки) общие осадки в первый год после возведения насыпи достигают 70-80 % от полной величины осадки. На 2-й год осадка насыпи и основания составляет примерно 15-20 %, а оставшиеся 5-10 % приходятся на 3-5-й год эксплуатации дороги.

На слабых глинистых основаниях, насыщенных водой, осадки насыпи могут растянуться на значительно больший срок, иногда исчисляемый десятилетиями.

В противоположность общим осадкам земляного полотна местные просадки возникают периодически (обычно весной), что объясняется максимальной влажностью оттаивающего грунтового основания покрытия в этот период года.

В результате общих и местных деформаций насыпи, если не принимать необходимых мер, дорожное покрытие возле мостов разрушается, образуя просадки и неровности.

Эксплуатационные организации ликвидируют просадки укладкой дополнительных слоев асфальтобетона. На следующий год или через год просадки возобновляются. По мере ремонта покрытия асфальтобетон погружается в тело земляного полотна. На некоторых длительно эксплуатирующихся дорогах общая толщина асфальтобетона возле мостов достигла 50-100 см (рис. 2) * .

Рис. 2. Местная просадка насыпи возле одного из мостов на дороге Москва-Симферополь:

1-асфальтобетон (за срок эксплуатации 17 лет толщина слоя достигла 50 см); 2-буровые скважины

До настоящего времени сопряжения мостов и путепроводов с насыпью устраивали либо с применением коротких (1,5-2,0 м) переходных плит, либо без переходных плит - с устройством клинообразного утолщения щебеночного основания покрытия. Плиты такой длины недостаточны для перекрытия активной зоны образования местных просадок, а клинообразные утолщения основания покрытия быстро деформируются, образуя перед мостом порожек.

* Журавлев М.М. Исследование причин расстройства сопряжений автодорожных мостов с насыпями. - Сб. "Труды Союздорнии", вып. 42, М., 1970.

Во многих случаях подходы к мостам отсыпаются из местных недренирующих грунтов без надлежащего их уплотнения. Часто нарушается технологическая последовательность строительных работ: земляное полотно возводится с опережением строительства моста, т.е. мост строится в прогале насыпи. Такая последовательность работ вызывает возле моста неравномерные осадки основания земляного полотна.

Грубейшим нарушением технологии работ является устройство переходных плит и покрытия на подходах к мостам сразу после отсыпки насыпи (или засыпки прогала), когда деформации консолидации грунтов наиболее интенсивны. В результате этого переходные плиты своим наружным концом резко опускаются и теряют свое назначение.

Бортовые лотки на обочинах земляного полотна при вогнутом профиле дороги устраиваются лишь в редких случаях. При отсутствии таких лотков поверхностные воды устремляются по покрытию к мосту, увлажняют земляное полотно, размывают его откосы и конуса, чем нарушается устойчивость насыпи возле моста.

Таким образом, почти единственной мерой предупреждения просадок покрытия возле мостов до настоящего времени являлось применение переходных плит длиной 1,5 - 2 м и в последнее время Г-образных плит длиной 3 м X . Последний тип плит, помимо недостаточной длины, дает также значительные раскрытия деформационного шва на береговой опоре.

Отмеченные недостатки конструктивных решений и технологии работ приводят к деформации узла сопряжения моста с насыпью. В особенности деформации покрытия велики у мостов, сопряжения которых выполнены без переходных плит, с устройством лишь щебеночного клина. Например, на подготовленной в 1968 г. к сдаче дороге Тамбов-Первомайский из-за больших деформаций покрытия возле мостов пришлось выставить предупреждающие знаки о неровностях на дороге, а затем производить реконструкцию узлов сопряжений путем укладки переходных плит.

X Исключение составляет применение переходных плит длиной 5,0 м на шести мостах второй очереди строительства Московской кольцевой дороги (1961 г.), что по сравнению с плитами длиной 2 м значительно повысило ровность покрытия.

Приложение 2

на скрытые работы по устройству сопряжений с насыпью моста через реку_____________на км _______пк ________ дороги ______________________

«___»______19 ____ г Поселок___________________________________________________

Мы, нижеподписавшиеся, представители ________________________________ составили настоящий акт в том, что «____»__________с.г. произведено освидетельствование и испытание грунтов земляного полотна на подходах к мосту, в результате установлено следующее:

1. Насыпь подхода со стороны _________________отсыпана в ___________ (месяц) ___________19 ____ г. из грунтов ______________________________. Возле береговых опор часть насыпи отсыпана ____________ 19 ____г. из дренирующего грунта ________________________________(наименование грунта) с коэффициентом фильтрации ______________________ м/сут.

Уплотнение грунтов производилось слоями по ____ см ________________ (наименование механизма) __________________________________.

Коэффициент уплотнения не менее: в расстоянии 2-3 м от береговой опоры ____________; на конусе______________ в расстоянии 50 м от моста ______________ (см. прилагаемую выписку из журнала контроля уплотнения).

2. Насыпь подхода со стороны ________________________________________________

(аналогичный текст, как в п. 1)________________________________________________

Уплотнение щебеночной подушки под лежень и щебеночного основания под переходные плиты осуществлялось _______________________________________(наименование механизма).

На основании произведенного освидетельствования считать полотно подходов к мосту подготовленным для укладки переходных плит.

3. Переходные плиты длиной _______ м поверхностного, полузаглубленного, заглубленного типа (ненужное зачеркнуть), уложены _________________19 __ г.

______________________________________________________________________________

(отразить установку штырей, заделку швов и омоноличивание элементов).

Приложения: 1. Выписка из журнала контроля уплотнения грунта на _______листах.

2. Нивелировочные профили сопряжений на _________ листах.

Приложение 3

При устройстве рекомендуемых типов сопряжений снизится себестоимость перевозок грузов за счет повышения скоростей на подходах к мостам. Годовой выигрыш себестоимости перевозок на один мост ΔЭ 1 , можно определить, используя формулу В.Ф. Бабкова *

где коэффициент K б - отношение скорости на участке снижения к средней скорости автомобиля (V m =50 км/час) принят равным 0,6;

N - средняя интенсивность движения, равная 2000 авт/сутки;

L - длина подходов к мосту, равная 0,3 км;

r - стоимость пробега 1 автомобиля, принятая 0,20 руб/км (при средней грузоподъемности, средних значениях коэффициентов использования грузоподъемности и пробега автомобилей γβq = 2,9 и себестоимости перевозок - 5,3 коп/ткм);

Т раб.= количество рабочих дней автомобиля в году, равное 275.

В связи с ускорением доставки грузов будет получен эффект в сфере народного хозяйства. Этот эффект можно оценить по формуле

Принципы реконструкции дорог. - * Автомобильные дороги", 1969, № 11.

где 0,6 - коэффициент, учитывающий долю товарных грузов и грузов краткосрочного хранения (по А.Б. Меерсону);

Ц - средняя цена 1 т грузовой массы, равная 420 руб;

Q г - годовое количество грузов- Q г =N γβqT раб - подсчитано при ранее принятых значениях;

V m = 50 км/час;

V 0 = 25 км/час;

L = 0,3 км;

Е н - нормативный коэффициент эффективности капиталовложений.

Кроме перечисленного выше, эксплуатационные организации снизят расходы на ежегодный ремонт покрытия возле мостов ΔЭ 3 , которые, по данным обследования Союздорнии, на 1 мост составляют 90 руб/год.

С другой стороны, применение новых сопряжений по сравнению со старыми типами (плиты длиной 2 м) вызовет удорожание строительства (см. таблицу).

Наименование материалов и работ

Объемы работ, м 3 , при сопряжениях

Удорожание работ, тыс. руб. при новых типах, для плит:

старых

новых, для плит

4-м

6-м

4-м

6-м

Железобетон

48,8

Подушка под лежень

Грунт, укрепленный вяжущим

Итого: удорожание, тыс. руб.

Коэффициент эффективности капиталовложений при устройстве рекомендуемых типов сопряжений определяют при возрастании грузооборота на дороге по прямолинейной зависимости Э t = Э 0 (1 + at ) , в которой параметр a = 0,13 принят по статистическим данным; t -рассматриваемый отрезок времени, годы. Расчетный год определения затрат:

где года < Т н = 8,3 года

Приведенные данные свидетельствуют об эффективности применения новых конструкций сопряжения мостов и путепроводов с насыпью.

1.69 Земляное полотно на протяжении 10 м от задней грани устоев у больших железнодорожных мостов должно быть уширено на 0,5 м с каждой стороны, у автодорожных и городских мостов – иметь ширину не менее расстояния между перилами плюс 0,5 м с каждой стороны. Переход от увеличенной ширины к нормальной следует делать плавным и осуществлять на длине 15–25 м.

1.70 В местах примыкания насыпи к устоям железнодорожных мостов следует предусматривать меры для удержания балластной призмы от осыпания.

1.71 В сопряжении автодорожных и городских мостов с насыпью следует, как правило, предусматривать укладку железобетонных переходных плит, опираемых одним концом на шкафную стенку устоя, а другим – на лежень.

Переходные плиты укладывают на полную ширину сооружения. В пределах ширины тротуаров укладывают плиты укороченной длины.

Длину плит следует принимать в зависимости от высоты насыпи и ожидаемых осадок грунта под лежнем плиты, как правило, в диапазоне от 4 до 8 м.

На мостах с устоями, опирающимися непосредственно на насыпь (диванного типа), длину переходных плит следует назначать, учитывая необходимость соблюдения принятого профиля проезда при возможной разности осадок опорных площадок плиты, и принимать не менее 2 м.

Щебеночная подушка под лежнем плиты должна опираться на дренирующий грунт или на грунт насыпи ниже глубины промерзания. Щебеночная подушка должна быть отделена от грунта насыпи разделительным материалом, хорошо фильтрующим и не подверженном быстрому заиливанию. При слабых глинистых грунтах в основании насыпи лежни переходных плит и диванных устоев следует укладывать на армогрунтовое основание.

Щебеночную подушку под переходными плитами и лежнем устраивают из фракционного щебня по способу заклинки. Нижний слой толщиной 50 мм втрамбовывают в грунт.

Поверхности переходных плит и лежня должны иметь гидроизоляцию, преимущественно обмазочного типа.

Переходные плиты следует выполнять, как правило, сборно-монолитными из бетона класса В30, маркой по водонепроницаемости W6 с морозостойкостью, соответствующей району строительства.

Покрытие проезжей части в пределах переходных плит следует выполнять одновременно с устройством покрытия на мостовом сооружении.

1.72 При сопряжении конструкций мостов с насыпями подходов необходимо выполнять условия:

а) после осадки насыпи и конуса примыкающая к насыпи часть устоя должна входить в конус на величину (считая от вершины конуса насыпи на уровне бровки полотна до грани, сопрягаемой с насыпью конструкции) не менее 0,75 м при высоте насыпи до 6 м и не менее 1,00 м при высоте насыпи свыше 6 м;

б) откосы конусов должны проходить ниже подферменной площадки (в плоскости шкафной стенки) или верха боковых стенок, ограждающих шкафную часть, не менее чем на 0,50 м – для железнодорожных и на 0,40 м – для автодорожных и городских мостов. Низ конуса насыпи у необсыпных устоев не должен выходить за переднюю грань устоя. В обсыпных устоях мостов линия пересечения поверхности конуса с передней гранью устоя должна быть расположена выше уровня воды расчетного паводка (без подпора и наката волн) не менее чем на 0,50 м;

в) откосы конусов необсыпных устоев должны иметь уклоны на высоте первых 6 м, считая сверху вниз от бровки насыпи, – не круче 1:1,25, на высоте следующих 6 м – не круче 1:1,50, при высоте насыпи выше 12 м – не менее 1:1,75 в пределах всего конуса или до более пологой его части. Крутизну откосов конусов насыпей следует определять расчетом устойчивости конуса (с проверкой основания);

г) откосы конусов обсыпных устоев, устоев рамных и свайно-эстакадных мостов, а также всех мостов в пределах подтопления при уровне воды расчетного паводка должны иметь уклоны не круче 1:1,5.

Устойчивость концевых участков насыпей и конусов с захватом основания следует проверять по кругло цилиндрическим или иным (обусловленным геологическим строением склона) поверхностям скольжения.

При расположении опор на потенциально оползневых склонах должны быть приняты конструктивно-технологические мероприятия, исключающие активизацию оползневого процесса.

Для сейсмических районов уклоны откосов конусов следует назначать в соответствии с требованиями СНиП II-7.

1.73 Крайний ряд стоек или свай устоев деревянных мостов должен входить в насыпь не менее чем на 0,50 м, считая от оси стойки до бровки конуса, при этом концы прогонов должны быть защищены от соприкосновения с грунтом.

1.74 Отсыпку конусов, а также насыпей за устоями мостов на длину поверху – не менее высоты насыпи за устоем плюс 2,0 м и понизу (в уровне естественной поверхности грунта) – не менее 2,0 м следует предусматривать из песчаного или другого дренирующего грунта с коэффициентом фильтрации (после уплотнения) не менее 2 м/сут. Дренирующую засыпку необходимо тщательно уплотнять до коэффициента уплотнения не менее 0,98.

В особых условиях при соответствующем технико-экономическом обосновании допускается применение песков с коэффициентом фильтрации менее 2 м/сут при обеспечении с помощью конструктивных и технологических мероприятий (в том числе с применением укрепляющих и армирующих материалов и сеток) требуемой надежности и долговечности устоев, конусов и насыпей за устоями.

Разрешается также применение армогрунтовых конструкций без конусов, армированных композитными материалами.

1.75 Откосы конусов у мостов и путепроводов должны быть укреплены на всю высоту. Типы укреплений откосов и подошв конусов и насыпей в пределах подтопления на подходах к мостам и у труб, а также откосов регуляционных сооружений следует назначать в зависимости от их крутизны, условий ледохода, воздействия волн и течения воды при скоростях, отвечающих максимальным расходам во время паводков: наибольших – для мостов на железных дорогах общей сети и расчетных – для остальных мостов. Отметки верха укреплений должны быть выше уровней воды, отвечающих указанным выше паводкам, с учетом подпора и наката волны на насыпь:

у больших и средних мостов – не менее 0,50 м;

у малых мостов и труб – не менее 0,25 м.

ОТВОД ВОДЫ

1.76 Проезжую часть и другие поверхности конструкций (в том числе тротуары), на которые может попадать вода, следует проектировать с поперечным уклоном не менее 20 ‰, в балластных корытах железнодорожных мостов – не менее 30 ‰. При этом, поперечный профиль следует проектировать без перелома уклонов проезжей части и тротуаров.

Продольный уклон поверхности проезжей части на автодорожных и городских мостах следует принимать не менее 5 ‰. При продольном уклоне свыше 10 ‰ допускается уменьшение поперечного уклона при условии, что геометрическая сумма уклонов будет не менее 20 ‰.

1.77 Воду с поверхности проезжей части и тротуаров следует отводить:

При длине сбора воды не более 50 м – по продольному уклону вдоль парапета (цоколя под ограждением или перилами) со сбросом воды поперечными водоотводными лотками, расположенными на конусах;

При длине водосбора более 50 м – сбросом воды по водосточным трубам в местах расположения опор;

При продольных уклонах сооружения 5 - 10 ‰ – с помощью водоотводных трубок, устанавливаемых с шагом 6 – 12 м;

Поперечными лотками, устраиваемыми в разрывах цоколя под перилами с шагом 6 – 12 м.

Неорганизованный сброс воды с сооружения по всей его длине не допускается.

Вода из водоотводящих устройств не должна попадать на нижележащие конструкции, а также на железнодорожные пути и проезжую часть автомобильных дорог, расположенных под путепроводами.

При сбросе воды с мостового сооружения поперечными лотками в зоне над конусом, в их створе на конусе должен быть организован бетонный водоприемный лоток, ориентированный в продольном направлении мостового сооружения.

Поперечные телескопические лотки на насыпи подходов должны быть организованы, как правило, сразу за открылками устоев. При этом между шкафной стенкой и лотком должен быть организован подвод воды к телескопическому лотку с укреплением обочины от размыва.

Верх водоотводных трубок и дно лотков следует устраивать ниже поверхности, с которой отводится вода, не менее чем на 1 см.

При расположении мостового сооружения на уклоне, на подходах к сооружению с верховой стороны должны быть устроены перехватывающие воду поперечные лотки (один или два с шагом 10 м), перекрытые трапами и отводящие воду в телескопические лотки, расположенные на откосах подходов.

На пролетном строении следует устраивать дренажную систему, включающую продольные и поперечные дренажные каналы и дренажные трубки.

При наличии дренажной системы и достаточных уклонах водоотводные трубки можно не устанавливать.

Дренажные каналы располагают в толще защитного слоя или нижнего слоя покрытия. Материал дренажного канала должен быть пористым и обладать прочностью, соответствующей давлению колеса автомобиля. Дренажные трубки следует совмещать со створом водоотводных трубок и размещать между ними.

Дренажные каналы следует выполнять шириной 100-200 мм в поперечном, продольном и диагональном направлениях. Верх дренажных трубок должен находиться в уровне верха гидроизоляции. Продольные дренажные каналы располагают в пониженных местах плиты проезжей части, в местах перелома поперечного профиля у цоколей под ограждениями, в поперечном направлении – у приливов перед деформационными швами. Каналы диагонального направления устраивают на широких пролетных строениях и на пролетных строениях, расположенных на вираже.

Для предотвращения увлажнения нижних поверхностей железобетонных и бетонных конструкций (консольных плит крайних балок, тротуарных блоков, оголовков опор и др.) на них следует устраивать защитные выступы и слезники.

1.78 Водоотводные трубки должны иметь внутренний диаметр не менее 150 мм.

Водоотводные трубки в балластных корытах железнодорожных мостов следует устраивать из расчета не менее 5 см 2 сечения трубки на 1 м 2 площади стока.

Расстояния между водоотводными трубками на проезжей части автодорожных и городских мостов должны составлять вдоль пролета не более 6 м при продольном уклоне до 5 ‰ и 12 м – при уклонах от 5 до 10 ‰. На более крутых уклонах расстояние между трубками может быть увеличено.

Водоотводные трубки следует устанавливать во время бетонирования конструкций. Гидроизоляция должна быть заведена в воронку трубки и защемлена водоприемным стаканом. Конструкция трубок должна позволять быструю и простую их разборку и прочистку.

1.79 При необходимости сохранения вечномерзлых грунтов в основаниях устоев следует предусматривать меры, исключающие доступ воды к основанию.

В случае притока поверхностной воды со стороны подходов необходимо предусматривать устройства для отвода ее за пределы земляного полотна.