Электродинамическая стойкость кз. Действие токов короткого замыкания

Способность аппаратов, проводников и изоляторов противостоять электродинамическим и термическим воздействиям, возникающим при прохождении через них наибольших токов КЗ, называют соответственно электродинамической и термической стойкостью.

При КЗ с достаточной для практики точностью процесс нагрева можно принять адиабатическим:

где i k (t ) - функция, характеризующая изменение тока КЗ во времени; R J - сопротивление проводника при данной температуре J; C J - удельная теплоемкость проводника при данной температуре; G - масса проводника.

Учитывая, что сопротивление проводника и его удельная теплоемкость являются функциями температуры:

,

где r 0 и с 0 - удельные сопротивление и теплоемкость проводника при начальной температуре J Н =0 °С; a и b - температурные коэффициенты сопротивления и теплоемкости; S , l , g - площадь поперечного сечения, длина и плотность проводника.

Разделяя переменные и интегрируя в требуемых пределах, получаем уравнение

которое позволяет определить конечную температуру проводника J к при нагреве его током КЗ от начальной температуры J н. Однако аналитическое решение этого уравнения сложно, и поэтому для распространенных проводниковых материалов построены зависимости значений второго интеграла от конечной температуры (при J н =0), которые представлены на рис. 2.8.

Рис. 2.8. Кривые для определения температуры нагрева токоведущих частей при КЗ

Первый интеграл, зависящий от тока КЗ и времени отключения t откл, получил название импульса квадратичного тока КЗ В. Его приближенное значение может быть выражено через действующие значения полного тока и его составляющих

где действующее значение полного тока КЗ в момент времени t ; I п, t - действующее значение периодической составляющей; I а, t – апе­риодическая составляющая.

Таким образом, импульс квадратичного тока КЗ равен сумме импульсов от периодической B п и апериодической B а составляющей.

Импульс от периодической составляющей можно определить графоаналитическим методом путем замены плавной кривой ступенчатой с ординатами, соответствующими средним значениям квадратов действующих значений токов для каждого интервала времени :



В тех случаях, когда место замыкания удалено от генераторов или требуется грубо (с завышением) оценить импульс от периодической составляющей, можно принять, что периодическая составляющая не затухает, т. е. .

Импульс от апериодической составляющей тока КЗ равен:

При находим

Тогда конечная температура проводника будет равна

.

На рис. 2.8 откладываем по оси ординат J н и по соответствующей кривой (точка а ) находим А н. Прибавляя к А н (на оси абсцисс) величину B /S 2 , получаем А н и отвечающую ей температуру проводника J к (точка б на кривой).

Конечная температура при КЗ не должна быть выше допускаемой по условию сохранения изоляции или по условию механической прочности (для неизолированных проводников).

Условие термической стойкости проводника:

Термическую стойкость аппаратов принято характеризовать номинальным током термической стойкости I тер при определенной длительности его прохождения, называемой номинальным временем термической стойкости t тер. Для проверки аппарата на термическую стойкость сопоставляют нормированное заводом изготовителем значение теплового импульса с расчетным. Условие термической стойкости аппарата формулируется в виде:

Методика расчета термической и динамической стойкости проводников и аппаратов боле подробно приведена в руководящих указаниях по расчету токов короткого замыкания и выбору электрооборудования РД 153–34.0–20.527–98

Если в двух параллельных проводниках протекают однонаправленные токи ι 1 и ι 2 , то эти проводники испытывают по отношению друг к другу силу притяжения в виде равномерно распределенной сплошной механической линейной нагрузки f [Н/м], равной

F = 2∙10 -7 к ф , (6.32)

где ι 1 , ι 2 – токи в проводниках, А;

а – расстояние между проводниками, м 2 ;

к ф – коэффициент, учитывающий неравномерность распределения тока по сечению проводника (к ф ≈ 1 для круглого, квадратного и трубчатого сечений при U < 6 кВ и для любого сечения при U > 6 кВ; при U < 6 кВ для плоских шин к ф определяется по справочным кривым в зависимости от размеров сечения и расстояния между шинами).

При 3х фазном КЗ и распределении проводников в одной плоскости наибольшее усилие от действия тока КЗ испытывает средняя фаза. Максимальная (ударная) линейная механическая нагрузка для этой фазы равна

F уд = 10 -7 к ф . (6.32)

Механическая нагрузка вызывает в жестких проводниках (шинах) изгибающий момент. В случае, когда бесконечно длинный проводник расположен на равномерно расставленных опорах (рис. 6.2), изгибающий момент максимален на самой опоре М макс, [Н∙м] и равен

М макс = , (6.33)

l – пролет между опорами, м.

проводника, закрепленного на равномерно расставленных опорах

При действии изгибающего момента в металле возникает механическое напряжение, σ, Н/м 2 или МПа. Наибольшее механическое напряжение в металле при изгибе равно

где W – момент сопротивления, м 3 .

Момент сопротивления определяется размерами проводника и направлением действующей на проводник силы (способа расположения шин, рис. 6.3)

Рис. 6.3. Расположение шин на изоляторах:

а – плашмя; б – на ребро

При расположении шин на изоляторах плашмя (рис. 6.3,а ), момент сопротивления равен

При расположении шин на ребро (рис. 6.3,б ) момент сопротивления равен

Расчетные значения напряжений в металле шины σ расч должны быть меньше допустимого значения напряжения σ доп для данного материала, т.е. должно выполняться условие

σ расч ≤ σ доп. (6.36)

Конец работы -

Эта тема принадлежит разделу:

Конспект лекций по дисциплине «Электроснабжение промышленных предприятий»

Приазовский государственный технический университет.. кафедра электроснабжения промышленных предприятий..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Коляда Л.И
Конспект лекций по дисциплине «Электроснабжение промышленных предприятий» для студентов специально

Пути развития СЭС промышленных предприятий
Системы электроснабжения (СЭС) промышленных предприятий усложняются по мере развития электропотребления. При реконструкции (СЭС) и проектировании новых систем должны решаться следующие основные зад

Предприятий
Приемником электрической энергии является электрическая часть технологической установки или механизма, получающая энергию из сети и расходующая её на выполнение технологических процессов.

Характеристика ЭП промышленных предприятий
Рассмотрим характерные группы приемников электрической энергии промышленных предприятий. 1. Силовые общепромышленные установки. К этой группе приемников электрической энергии относя

Режимы работы электроприемников
Правильное определение электрических нагрузок (ЭНГ) является решающим и важнейшим этапом при проектировании и эксплуатации систем электроснабжения. Электрические нагрузки характериз

Методы определения расчетных нагрузок
Для расчета электрических нагрузок промышленных предприятий применяют в основном два метода: метод коэффициента спроса и метод расчетного коэффициента. К вспомогательным методам отн

Определение расхода электроэнергии
Суммарная нагрузка (активная, РΣ и реактивная, QΣ) на шинах напряжением выше 1000 В определяется соотношениями: РΣ = (Σ

Элементах электрической сети
В сетях промышленных предприятий теряется около 10% передаваемой электроэнергии. Величина потерь зависит от многих факторов, но в первую очередь определяется режимом работы электроприемников и отде

Способы снижения потерь ЭЭ в системах электроснабжения
Электроприемники промышленных предприятий требуют для своей работы как активную (Р), так и реактивную (Q) мощности. Реактивная мощность вырабатывается, как и активная, синхронными генераторами стан

Энергосистема
Для промышленных предприятий основным источником электроснабжения являются электрические станции, объединенные в энергетические системы. Количество электроэнергии, вырабатываемой ге

Электростанции промышленного назначения
Электростанции промышленного назначения (заводские электростанции) относятся к местным источникам активной мощности. Наличие местных источников должно обосновываться технико-экономи

Силовые трансформаторы в системе электроснабжения
Силовые трансформаторы являются основным электрическим оборудованием, обеспечивающим передачу и распределение электрической энергии от электростанций к потребителям. С помощью силовых тран

Режимы работы нейтрали в системах электроснабжения
Электротехнические установки и электрические сети напряжением выше 1000 В, согласно ПУЭ, разделяются на установки с большими токами замыкания на землю (сила тока однофазного короткого замыка

Незамкнутые и замкнутые сети
Незамкнутыми (открытыми) называются сети, линии которых не образуют замкнутых контуров. Такие сети имеют один основной источник питания, подключенный к одному из узлов сети.

Применяемые типы проводников
Для выполнения электрических сетей применяются неизолированные (голые) и изолированные провода, кабели, токопроводы. Голые провода не имеют изолирующих покровов. Их

Электропроводка с изолированными проводами
Электропроводками принято называть сети постоянного и переменного тока напряжением до 1 кВ, выполняемые изолированными проводами, также кабелями малых сечений (до 16 мм2).

Кабельные линии
Кабели применяются в сетях промышленных предприятий всех напряжений (до 110 кВ включительно) как внутри зданий и сооружений, так и по территории предприятия и во внешнем электроснабжении.

Шинопроводы
Шинопроводом называются линии передачи электроэнергии, проводниками которых являются жесткие шины. Шинопроводы могут быть открытыми (неизолированные шины на опорных из

Воздушные линии
Воздушной линией электропередачи (ВЛ или ВЛЭП) называют устройство для передачи электроэнергии по проводам. ВЛ могут использоваться в сетях высокого и низкого напряжений для распред

Короткие замыкания в электрических сетях
Коротким замыканием (КЗ) называется преднамеренное или случайное, не предусмотренное нормальными условиями работы соединение двух точек электрической сети через очень малое с

Расчет тока КЗ с неизменной периодической составляющей
Периодическую составляющую тока КЗ, в соответствии с допускаемыми погрешностями, можно считать практически неизменной во времени, если ее изменения остаются в пределах 10%. Если рас

Расчет тока КЗ с изменяющейся периодической составляющей
Если условие х* ≥ 3 не выполняется, то при расчете токов КЗ необходимо учитывать переходные процессы в генераторах. Упрощенно можно принять, что эти явления оказыва

Тепловое (электротермическое) действие тока КЗ
Переходный процесс (ПП) нагрева проводников током КЗ характерен тем, что его длительность (τпп ≈ несколько секунд) намного меньше, чем постоянная времени нагрева проводников т

Ограничение токов короткого замыкания
Для промышленных электрических сетей характерно наличие мощных источников питания и соответственно больших значений токов КЗ. Это может существенно увеличить стоимость системы электроснабжения по с

Схемы цеховых трансформаторных подстанций
Цеховые подстанции питают сеть НН. На цеховых трансформаторных подстанциях напряжением 6-10 / 0,4 кВ применяются, как правило, схемы без сборных шин ВН. Схемы трансформаторны

Схемы главных понизительных подстанций
Для надежного питания потребителей I и II категорий главные понизительные подстанции (ГПП и ПГВ), как правило, сооружаются двухтрансформаторными. Питаются подстанции от энергосистем

Основное электрооборудование подстанций
Основным электрооборудованием подстанций являются: силовые трансформаторы, коммутационные аппараты, разъединители, изоляторы и шины распределительных устройств, измерительные трансф

Изоляторы и шины распределительных устройств
Токоведущие части электроустановок крепятся и изолируются друг от друга посредством изоляторов. Изоляторы делятся на линейные, аппаратные, опорные и проходные. Линейные изоляторы пр

Назначение релейной защиты
В условиях эксплуатации электроустановок возможны повреждения отдельных элементов системы электроснабжения. Совокупность специальных устройств, контролирующих состояние всех элементов системы

Основные принципы действия релейной защиты
Одним из признаков возникновения КЗ является увеличение тока в линии. Этот признак используется для выполнения релейных защит (РЗ), называемых токовыми. Токовые РЗ приходят в действие при ув

Предприятий
Релейная защита – это только часть автоматики, которая получила применение в системах электроснабжения раньше других автоматических устройств. Однако только релейная защита не может

При протекании по проводникам электрического тока проводники нагреваются. При нагреве проводника током нагрузки часть выделенной теплоты рассеивается в окружающую среду, причем степень рассеивания зависит от условий охлаждения.

При протекании тока КЗ температура проводников значительно возрастает, так как токи при КЗ резко увеличиваются, а длительность КЗ мала, поэтому теплота, выделяющаяся в проводнике, не успевает передаться в окружающую среду и практически все идет на нагрев проводника. Нагрев проводника при КЗ может достигать опасных значений, приводя к плавлению или обугливанию изоляции, к деформации и плавлению токоведущих частей и т.п.

Критерием термической стойкости проводников являются допустимые температуры нагрева их токами КЗ (х доп,°С).

Проводник или аппарат считается термически стойким, если его температура нагрева в процессе КЗ не превышает допустимых величин. Условие термической стойкости в общем случае выглядит так,°С:

х кон? х доп (4.1.)

где х кон - конечное значение температуры проводника в режиме КЗ.

Количественную оценку степени термического воздействия тока КЗ на проводники и электрические аппараты рекомендуется производить с помощью интеграла Джоуля

где i Kt - полный ток КЗ в произвольный момент времени t, А; t откл - расчетная продолжительность КЗ, с.

Интеграл Джоуля является сложной функцией, зависящей от параметров источников энергии, конфигурации исходной расчетной схемы, электрической удаленности места КЗ от источников и других факторов. Для ориентировочных расчетов интеграла Джоуля В к в цепях, имеющих значительную удаленность от источников питания, можно использовать формулу, кА 2 *с,

где - действующее значение периодической составляющей тока КЗ в момент t = 0 от эквивалентного источника, кА; - эквивалентная постоянная времени затухания апериодической составляющей тока КЗ, с; t откл - расчетная продолжительность КЗ, с.

Наиболее сложным является случай определения интеграла Джоуля при КЗ вблизи генераторов или синхронных компенсаторов. Но в учебном проектировании и здесь можно воспользоваться формулой (4.1.3.), так как полученное при этом значение В к будет несколько завышено, а проводники и аппараты, выбранные в мощных присоединениях (генератор, трансформатор связи и др.) по условиям длительного режима и электродинамической стойкости, имеют значительные запасы по термической стойкости. Исходя из вышеизложенных соображений, в формуле (4.1.3.) в качестве Т а.экв можно принять наибольшее из значений Т а тех источников, которые подпитывают место КЗ, если таковых имелось несколько, так как это ведет к увеличению расчетного интеграла Джоуля и не дает погрешности при проверке аппаратов на термическую стойкость.

При определении интеграла Джоуля необходимо достаточно точно определить t откл. Согласно ПУЭ расчетная продолжительность КЗ t откл складывается из времени действия основной релейной защиты данной цепи (t pз) с учетом действия АПВ и полного времени отключения выключателя (t откл.в), которое указывается в каталожных данных выключателей, с,

t откл = t pз + t откл.в (4.4.)

Для цепей генераторов с Р номG ? 60 МВт ПУЭ рекомендуется принимать t откл = 4 с, т.е. по времени действия резервной защиты.

Заводы-изготовители в каталогах приводят значения гарантированного среднеквадратичного тока термической стойкости (t тер, кА) и допустимого времени его протекания (t тер, с) для электрических аппаратов (выключателей, разъединителей, трансформаторов тока и др.).

В этом случае условие термической стойкости аппаратов в режиме КЗ выглядит так, кА 2 *с,

B к? t тер (4.5.)

При проверке термической стойкости проводника, имеющего стандартное сечение q станд, мм 2 , должно быть выполнено условие

q станд? q min (4.6.)

В ПУЭ оговорен ряд случаев, когда допустимо не проверять проводники и аппараты на термическую стойкость при КЗ. Это касается проводов воздушных ЛЭП, аппаратов и проводников цепей, защищенных плавкими предохранителями, и др.

В электрических установках могут возникать различные виды коротких замыканий, которые сопровождаются резким увеличением тока.

Все установленное электрооборудование в системах электроснабжения должно быть устойчивым к токам короткого замыкания и выбираются с учетом этих токов.

Электродинамические действия токов К.З.

При к.з. в результате возникновения наибольшего ударного тока к.з. в шинах и других конструкциях распред устройств возникают электродинамические усилия, которые в свою очередь создают изгибающий момент, а следовательно, механическое напряжение в металле, которое должно быть меньше допустимого напряжения для данного металла.

Электродинамическое действие ударного тока к.з. при трехфазном к.з. определяется наибольшей силой F(3) (кГ), действующей на шину средней фазы при условии расположения проводников в одной плоскости:

Где l,a-длинна и расстояние между токоведущими частями (см)

–коэффициент, учитывающий несовпадение и неодинаковое значение ударного тока в фазах.

Рассматривая шину как равномерно нагруженную многопролетную балку, изгибающий момент, создаваемый ударным током:

Термическое действие токов К.З.

Токоведущие части в том числе и кабели при к.з. могут нагреваться до температуры значительно большей, чем при нормальном режиме. Что бы токоведущие части были термически устойчивы к токам к.з., величина расчетной температуры t расч должна быть ниже температуры допустимой t доп для данного материала.

За действительное время протекания тока к.з. принимается суммарное время действия защиты t з и выключающей аппаратуры t в

При проверки токоведущих частей на термич. Устойчивость обычно пользуются понятием приведенного времени T пр, в течение которого установившийся ток к.з. I∞ выделяется то же кол.во тепла что и изменяющийся во времени ток к.з. за действительное время t.

Приведенное время определяется составл. времени апериодической слагающих тока к.з. :

Величину t пр.п при действительном времени t<5сек. Находят по кривым зависимости где


При действительном времени t>5 сек величина t пр.п = t пр.5 +(t-5) где t пр.5 -приведенное время для t=5сек. Приведенное время апериодической слагающей

При действительном времени t<1 сек величина t пр.а не учитывается.

Расчет на термическую устойчивость токоведущих частей производится по кривым нагрева разл. Металлов, представляющих зависимость рис. 3.15 где -плотность тока а/мм 2

T пр - приведенное время действия тока к.з. (сек)



Ограничение токов К.з.

При питании электроустановок пром. Предприятий от мощных энергосистем приходится значительно повышать сечение токоведущих частей и габариты аппаратов, выбирать их по условиям как нормального так и динамич. и термич. устойчивости.

Наиболее распростр. Способами ограничения токов к.з. являются:

А) раздельная работа трансформаторов и пит. Линий

Б) включение в сеть доп. Сопротивлений-реакторов

В) применение трансформаторов с защищенной обмоткой

Наиболее целесообразна и эффективна установка реакторов на линиях потребителей, подключаемых непосредственно на шины электрический станций, а так же на районных подстанциях большой мощности, питающих маломощные заводские подстанции.

Электродинамическую силу взаимодействия м/у двумя параллельными проводниками (рис. 1) произвольного сечения, обтекаемые токами i 1 и i 2 ,определяют по формуле

F=2.04·k ф i 1 i 2 ·l/a· 10 -8, кГ ,

где i 1 и i 2 – мгновенные значения токов в проводниках, a ; l – длина параллельных проводников, см ; a – расстояние м/у осями проводников, см ; k ф - коэффициент формы.

Сила взаимодействия двух параллельных проводников равномерно распределена по их длине. В практических расчетах эту равномерно распределенную силу заменяют результирующей силой F , приложенной к проводникам в середине их длины.

При одинаковом направлении токов в проводниках они притягиваются, а при разном – отталкиваются.

Коэффициент формы k ф зависит от формы сечения проводников и их взаимного расположения. Для круглых и трубчатых проводников k ф =1; для проводников других форм сечения принимают k ф =1 в тех случаях, когда сечение проводников мало, а длина их велика по сравнению с расстоянием м/у ними и можно предположить, что весь ток сосредоточен в оси проводника. Так, принимают k ф =1 при определении сил взаимодействия м/у фазами шинных конструкций распределительных устройств независимо от формы сечения шин, т.к. расстояние м/у шинами разных фаз в распределительных устройствах достаточно велики и составляют несколько сотен миллиметров и более.

Если расстояние м/у проводниками (шинами) прямоугольных, коробчатых и других сечений мало, то k ф ≠1.

Сила, действующая на проводник с током, определяется как результат взаимодействия его с токами в проводниках двух других фаз, при этом в наиболее тяжелых условиях оказывается проводник средней фазы. Наибольшее удельное усилие на проводник средней фазы может быть определено из выражения, Н/м,

f=√3·10 -7 · k ф ·I 2 m /a,

где I m – амплитуда тока в фазе, А; a – расстояние м/у соседними фазами, м.

Коэффициент √3 учитывает фазовые смещения токов в проводниках.

Взаимодействие проводников существенно возрастает в режиме КЗ, когда полный ток КЗ достигает своего наибольшего значения – ударного. При оценке взаимодействия фаз необходимо рассматривать двухфазное и трехфазное КЗ.

Для определения удельного усилия при трехфазном КЗ в системе проводников пользуются выражением

f (3) =√3·10 -7 · k ф ·i ( 3)2 у /a,

где i (3) у – ударный ток трехфазного КЗ, А.

В случае двухфазного КЗ влияние третьей (неповрежденной) фазы ничтожно мало, принимая во внимание, что ׀ i 1 ׀=‌ ׀ i 2 ‌| =|i (2)2 у |. Следовательно,

f (2) =2·10 -7 · k ф ·i ( 2)2 у /a,

где i ( 2) у – ударный ток двухфазного КЗ, А.

Учитывая, что междуфазное усилие при трехфазном КЗ больше, чем при двухфазном. Поэтому расчетным видом КЗ при оценке электродинамических сил считают трехфазное.


Для предотвращения механических повреждений под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все элементы токоведущей конструкции должны обладать достаточной электродинамической стойкостью.

Под электродинамической стойкостью понимают обычно способность аппаратов или проводников выдерживать механические усилия, возникающие при протекании токов КЗ, без деформаций, препятствующих их дальнейшей нормальной работе.

Термическое действие токов КЗ . При протекании тока КЗ температура проводника повышается. Длительность процесса КЗ обычно мала (в пределах нескольких секунд), поэтому тепло, выделяющееся в проводнике, не успевает передаться в окружающую среду и практически целиком идет на нагрев проводника. Проводник или аппарат следует считать термически стойким, если его температура в процессе КЗ не превышает допустимых величин.

Определить температуру нагрева проводника в процессе КЗ можно следующим путем. При КЗ за время dt в проводнике выделяется определенное количество тепла

dQ=I 2 k , t r θ dt,

где I k , t – действующее значение полного тока КЗ в момент t КЗ; r θ – активное сопротивление проводника при данной его температуре θ :

r θ =ρ 0 (1+αθ )l /q,

здесь ρ 0 – удельное активное сопротивление проводника при θ=0 0 ; l – длина проводника; q – его сечение; α - температурный коэффициент сопротивления.

Практически все тепло идет на нагрев проводника

dQ=Gc θ dθ,

где G – масса проводника; c θ – удельная теплоемкость материала проводника при температуре θ.

Процесс нагрева при КЗ определяется уравнением

I 2 k , t r θ dt= Gc θ dθ.

При выборе электрических аппаратов обычно не требуется определять температуру токоведущих частей, поскольку завод- изготовитель по данным специальных испытаний и расчетов гарантирует время и среднеквадратичный ток термической стойкости. Другими словами, в каталогах приводиться значение гарантированного импульса среднеквадратичнаго тока КЗ, который выдерживается аппаратом без повреждений, препятствующих дальнейшей нормальной работе. Условие проверки термической стойкости в этом случае следующее:

B к ≤I 2 тер t тер,

где B к – расчетный импульс квадратичного тока КЗ, определяемый по изложенной выше методике; I тер и t тер – соответственно среднеквадратичный ток термической стойкости и время его протекания (номинальное значение).

На действия токов короткого замыкания проверяют

1) на динамическую устойчивость – аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальные токи до 60 А включительно; электрооборудование, защищенное токоограничивающими плавкими предохранителями на большие номинальные токи, следует проверять на динамическую устойчивость по наибольшему мгновенному значению тока КЗ, пропускаемого предохранителем.

На термическую устойчивость – аппараты и проводники, защищенные плавкими предохранителями на любые номинальные токи,

2) проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 1000кВА и с первичным напряжением до 20 кВ включительно, если в электрической части предусмотрено необходимое резервирование, при котором отключение этих приемников не вызывает расстройства производственного процесса, если повреждение проводников не может вызвать взрыва и если замена поврежденных проводников без особых затруднений.

3) проводники в цепях к индивидуальным электроприемникам и отбельным распределительным пунктам неответственного назначения при условии, что их повреждение при КЗ не может явиться причиной взрыва;