Евклид имя. Евклид – краткая биография

Евклид родился около 330 г. до н.э., предположительно, в г. Александрия. Некоторые арабские авторы полагают, что он происходил из богатой семьи из Нократа. Есть версия, что Евклид мог родиться в Тире, а всю свою дальнейшую жизнь провести в Дамаске. Согласно некоторым документам, Евклид учился в древней школе Платона в Афинах, что было под силу только состоятельным людям. Уже после этого он переедет в г. Александрия в Египте, где и положит начало разделу математики, ныне известному как «геометрия».

Жизнь Евклида Александрийского часто путают с жизнью Евклида из Мегуро, что делает сложным обнаружение любых надёжных источников жизнеописания математика. Достоверно известно только то, что именно он привлёк внимание общественности к математике и вывел эту науку на совершенно новый уровень, совершив революционные открытия в этой области и доказав множество теорем. В те времена Александрия была не только крупнейшим городом в западной части мира, но и центром крупной, процветающей отрасли производства папируса. Именно в этом городе Евклид разработал, записал и представил миру свои труды по математике и геометрии.

Научная деятельность

Евклида обоснованно считают «отцом геометрии». Именно он заложил основы этой области знаний и возвёл её на должный уровень, открыв обществу законы одного самых сложных разделов математики в то время. После переезда в Александрию, Евклид, как и многие учёные того времени, благоразумно проводит большую часть времени в Александрийской библиотеке. Этот музей, посвящённый литературе, искусству и наукам, был основан ещё Птолемеем. Здесь Евклид начинает объединять геометрические принципы, арифметические теории и иррациональные числа в единую науку геометрию. Он продолжает доказывать свои теоремы и сводит их в колоссальный труд «Начала».

За всё время своей малоисследованной научной деятельности, учёный закончил 13 изданий «Начал», охватывающих широкий спектр вопросов, начиная с аксиом и утверждений и заканчивая стереометрией и теорией алгоритмов. Наряду с выдвижением различных теорий, он начинает разрабатывать методику доказательства и логическое обоснование этих идей, которые докажут предложенные Евклидом утверждения.

Его труд содержит более 467 утверждений касательно планиметрии и стереометрии, а также гипотез и тезисов, выдвигающих и доказывающих его теории относительно геометрических представлений. Доподлинно известно, что в качестве одного из примеров в своих «Началах» Евклид использовал теорему Пифагора, устанавливающую соотношение между сторонами прямоугольного треугольника. Евклид утверждал, что «теорема верна для всех случаев прямоугольных треугольников».

Известно, что за время существования «Начал», вплоть до XX века, было продано больше экземпляров этой книги, чем Библии. «Начала», изданные и переизданные бесчисленное количество раз, в своей работе использовали разные математики и авторы научных трудов. Евклидова геометрия не знала границ, и учёный продолжал доказывать всё новые теоремы в совершенно разных областях, как, например, в области «простых чисел», а также в области основ арифметических знаний. Цепочкой логических рассуждений Евклид стремился открыть тайные знания человечеству. Система, которую учёный продолжал разрабатывать в своих «Началах», станет единственной геометрией, которую будет знать мир вплоть до XIX века. Однако современные математики открыли новые теоремы и гипотезы геометрии, и разделили предмет на «евклидову геометрию» и «неевклидову геометрию».

Сам учёный называл это «обобщённым подходом», основанным не на методе проб и ошибок, а на представлении неоспоримых фактов теорий. Во времена, когда доступ к знаниям был ограничен, Евклид принимался за изучение вопросов совершенно разных областей, в том числе и «арифметики и чисел». Он заключил, что обнаружение «самого большого простого числа» физически невозможно. Это утверждение он обосновал тем, что, если к самому большому известному простому числу добавить единицу, это неизбежно приведёт к образованию нового простого числа. Этот классический пример является доказательством ясности и точности мысли учёного, несмотря на его почтенный возраст и времена, в которые он жил.

Аксиомы

Евклид говорил, что аксиомы – это утверждения, не требующие доказательств, но при этом он понимал, что слепое принятие на веру этих утверждений не может использоваться в построении математических теорий и формул. Он осознавал, что даже аксиомы должны быть подкреплены неоспоримыми доказательствами. А потому учёный начал приводить логические заключения, подтверждавшие его геометрические аксиомы и теоремы. Для лучшего понимания этих аксиом, он разделил их на две группы, которые назвал «постулатами». Первая группа известна как «общие понятия», состоящие из признанных научных утверждений. Вторая группа постулатов является синонимом самой геометрии. Первая группа включает такие понятия, как «целое больше суммы частей» и «если две величины порознь равны одной и той же третьей, то они равны между собой». Вот лишь два из пяти постулатов, записанных Евклидом. Пять постулатов второй группы относятся непосредственно к геометрии, утверждая, что «все прямые углы равны между собой», и что «от всякой точки до всякой точки можно провести прямую».

Научная деятельность математика Евклида процветала, и в начале 1570-х г.г. его «Начала» были переведены с греческого языка на арабский, а затем и на английский язык Джоном Ди. С момента своего написания, «Начала» были перепечатаны 1 000 раз и, в конце концов, заняли почётное место в учебных классах XX столетия. Известно множество случаев, когда математики пытались оспорить и опровергнуть геометрические и математические теории Евклида, но все попытки неизменно оканчивались провалом. Итальянский математик Джироламо Саккери стремился усовершенствовать труды Евклида, но оставил свои попытки, не в силах отыскать в них ни малейшего изъяна. И лишь спустя столетие новая группа математиков сможет представить новаторские теории в области геометрии.

Другие работы

Не переставая трудиться над изменением теории математики, Евклид успел написать ряд работ на другую тематику, которые используются и на которые ссылаются по сей день. Эти труды были чистыми предположениями, основанными на неопровержимых доказательствах, красной нитью проходящими через все «Начала». Учёный продолжил изучение и открыл новую область оптики – катоптрику, в значительной мере утверждавшую математическую функцию зеркал. Его работы в области оптики, математических соотношений, систематизаций данных и изучения конических сечений затерялись в глубине веков. Известно, что Евклид успешно окончил восемь изданий, или книг, по теоремам, касающимся конических сечений, но ни одна из них не дошла до наших дней. Он также сформулировал гипотезы и предположения, основанные на законах механики и траектории движения тел. По-видимому, все эти работы были взаимосвязаны, и высказанные в них теории произрастали из единого корня – его знаменитых «Начал». Он также разработал ряд евклидовых «построений» – основных инструментов, необходимых для выполнения геометрических построений.

Личная жизнь

Есть свидетельства, что Евклид открыл при Александрийской библиотеке частную школу, чтобы иметь возможность обучать математике таких же энтузиастов, как он сам. Также бытует мнение, что в поздний период своей жизни он продолжал помогать своим ученикам в разработке собственных теорий и написании трудов. У нас нет даже чёткого представления о внешности учёного, а все скульптуры и портреты Евклида, которые мы видим сегодня, являются лишь плодом воображения их творцов.

Смерть и наследие

Год и причины смерти Евклида остаются для человечества тайной. В литературе встречаются туманные намёки на то, что он мог умереть около 260 г. до н.э. Наследие, оставленное учёным после себя, куда более значимо, чем впечатление, которое он производил при жизни. Его книги и труды продавались по всему миру до самого XIX века. Наследие Евклида пережило учёного на целых 200 веков, и служило источником вдохновения для таких личностей, как, например, Авраам Линкольн. По слухам, Линкольн всегда суеверно носил при себе «Начала», и во всех своих речах цитировал работы Евклида. Даже после смерти учёного, математики разных стран продолжали доказывать теоремы и издавать труды под его именем. В общем и целом, в те времена, когда знания были закрыты для широких масс, Евклид логическим и научным путём создал формат математики древности, который в наши дни известен миру под названием «евклидовой геометрии».

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Особенно плодотворно развивались отрасли знаний естественного направления: физика, астрономия, землеведение, тесно связанные с математикой и геометрией. К числу самых прославленных эллинистических геометров и математиков относился знаменитый Евклид.

Биография Евклида известна очень плохо. В молодости он, возможно, обучался в афинской Академии, которая была не только философской, но и математической и астрономической школой (к Академии примыкал Евдокс Книдский). Затем Евклид жил в Александрии при Птолемеях I и II. Так что биография Евклида проходила преимущественно в первой половине III в. до н. э. Живший много веков позднее неоплатоник Прокл рассказывает, что когда Птолемей I спросил Евклида, заглянув в его главный труд, нет ли более короткой дороги к геометрии, то Евклид якобы гордо ответил царю, что науке нет царского пути.

Евклиду принадлежат такие фундаментальные исследования, как «Оптика» и «Диоптрика». В своей оптике Евклид исходил из пифагорейской теории, согласно которой лучи света – прямые линии, простирающиеся от глаза к воспринимаемому предмету.

«Начала» Евклида

Главный труд Евклида – «Начала» (или «Элементы», в оригинале «Стойхейа»). «Начала» Евклида состоят из 13 книг. Позднее к ним были прибавлены еще две книги.

Первые шесть книг «Начал» посвящены геометрии на плоскости – планиметрии. В философско-теоретическом отношении, в плане философии математики особенно интересна первая книга, которая начинается с определений, постулатов и аксиом, учение о которых было заложено Аристотелем.

Евклид определяет точку как то, что не имеет частей. Линия – длина без ширины. Концы линии – точки. Прямая линия равно расположена по отношению к точкам на ней. Поверхность есть то, что имеет только длину и ширину. Концы поверхности – линии. Плоская поверхность есть та, которая равно расположена по отношению к прямым на ней. И так далее. Таковы определения Евклида.

Статуя Евклида в музее Оксфордского университета

Далее следуют постулаты, т. е. то, что допускается. Допустим, что от всякой точки до всякой точки можно провести прямую линию, что ограниченную прямую можно непрерывно продолжить по прямой, что из любой точки, принятой за центр, можно всяким раствором циркуля описать круг, что все прямые углы равны между собой и что если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то, будучи продолженными, эти две прямые рано или поздно встретятся с той стороны, где углы меньше двух прямых.

Аксиомы Евклида говорят о том, что величины, равные третьей величине, равны между собой, что если к равным прибавить равные, то и целые будут равными, и т. д.

Далее, в первой же книге «Начал» Евклида, рассматриваются треугольники, параллельные линии, параллелограммы. Вторая книга «Начал» содержит геометрическую алгебру: числа и отношения чисел выражаются в пространственных величинах и в их пространственных же отношениях. Третья книга «Начал» исследует геометрию круга и окружности, четвертая – многоугольники. Пятая книга дает теорию пропорций как для соизмеримых, так и для несоизмеримых величин. В книге VI Евклид прилагает эти теории к планиметрии. Книги VII – X содержат теорию чисел, причем X книга трактует иррациональные линии. XI, XII и XIII книги «Начал» посвящены стереометрии, при этом в XII книге применяется метод исчерпания.

В строгом смысле слова Евклида нельзя считать «отцом геометрии». Свои «Начала» были у Гиппократа Хиосского в V в. до н. э. В IV в. до н. э. «Начала» были у Леона, и у Феудия Магнесийского. Метод исчерпания применял Евдокс Книдский, возможный учитель Евклида по Академии. Проблемой иррациональности занимались пифагореец Гиппас Метапонтский, Феодор Киренский, Теэтет Афинский... Однако Евклид – не простой передатчик сделанного до него математиками. В «Началах» Евклида мы видим завершение математики как стройной науки, исходящей из определений, постулатов и аксиом и построенной дедуктивно. Математика Евклида – вершина древнегреческой дедуктивной науки. Она резко отличается от ближневосточной математики с ее практической приблизительной рецептурностью. Не случайно «Начала» Евклида по их логической стройности, ясности, изяществу и законченности сравнивают с афинским Парфеноном .

Правда, существовала легенда, что сам Евклид – не единственный автор дошедших до нас «Начал», что он сам дал лишь догматическое изложение материала, без доказательств, что доказательства были добавлены вышеупомянутым Теоном Александрийским. Теон Александрийский действительно занимался проблематикой «Начал». Но не он один. Этим же занимались и Прокл, и Симплиций. «Начала» Евклида были частично переведены на латинский язык Цензорином и Боэцием. Но эти их переводы затерялись. На Западе вплоть до конца XII в. находились в обращении тезисы Евклида без доказательств.

Что касается Ближнего Востока, то там Евклид был известен в переводах с греческого на сирийский, а с сирийского – на арабский. Первым арабским философом, который заинтересовался Евклидом, был, по-видимому, аль-Кинди (IX в.). Его интерес ограничивался евклидовой «Оптикой». Однако затем последовала масса переводов и комментариев на «Начала». Эти арабские тексты были переведены в XIII в. на латинский язык. Первый латинский перевод с греческого оригинала был делан в Европе в 1493 г. и отпечатан в 1505 г. в Венеции. Но до 1572 г., когда Федерико Коммандино в своем латинском переводе исправил эту ошибку, Евклида-математика путали с Евклидом Мегариком.

Постулаты Евклида

Из постулатов Евклида видно, что Евклид представлял пространство как пустое, безграничное, изотропное и трехмерное. Бесконечность и безграничность пространства предполагается такими постулатами Евклида, как тезисы о том, что от всякой точки до всякой точки можно провести прямую линию, что ограниченную прямую можно непрерывно продолжить по прямой, что из всякого центра и всяким раствором циркуля может быть описан круг.

Особенно знаменит пятый постулат Евклида, который буквально звучит так (выше мы дали пересказ): «Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых». Позднее Прокл выразил этот постулат так: «Если прямая пересекает одну из двух параллельных линий, то она пересечет также и вторую параллельную». Более привычная для нас формула: «Через данную точку можно провести лишь одну параллельную к данной прямой» – принадлежит Джону Плейферу.

Не раз делались попытки доказать пятый постулат Евклида (Птолемей, Насир аль-Дин, Ламберт, Лежандр). Наконец, Карл Гаусс высказал в 1816 г. гипотезу, что этот постулат может быть заменен другим. Эта догадка была реализована в параллельных исследованиях независимо друг от друга Н. И. Лобачевским (1792–1856) и Яношем Больяем (1802–1866). Однако оба эти исследователя (и русский, и венгерский) не получили признания других математиков, особенно тех, кто стоял на позициях кантовского априоризма в понимании пространства, который допускал только одно пространство – евклидово. Только Бернхард Риман (1826–1866) своей теорией многообразий (1854) доказал возможность существования многих видов неевклидовой геометрии. Сам Б. Риман заменил пятый постулат Евклида на постулат, согласно которому вообще нет параллельных линий, а внутренние углы треугольника больше двух прямых. Феликс Клейн (1849–1925) показал соотношение неевклидовых и евклидовой геометрий. Евклидова геометрия относится к поверхностям с нулевой кривизной, геометрия Лобачевского – к поверхностям с положительной кривизной, а геометрия Римана – к поверхности с отрицательной кривизной.

О знаменитом древнегреческом математике Евклиде нам известно достоверно лишь то, что жил он в IV-III веках до н.э. и провел большую часть жизни в Александрии. Совсем немного сведений дают о нём авторы, такие как Архимед, Прокл и Папп Александрийский. Обширную и детализированную биографию Евклида написали также арабские авторы. Одна из арабских рукописей XII века утверждает, что Евклид, известный как «Геометр», был сыном некоего Наукрата, родился в Тире и проживал в Сирии. Но в исторической науке эта биография учёного считается полностью вымышленной. Напротив, упоминание о Евклиде Проклом считается достоверным. В своих «Комментариях к первой книге «Начал» Евклида» он указывает, что учёный жил во времена Птолемея I Сотера, аргументируя это тем, что «Архимед … упоминает об Евклиде и, в частности, рассказывает, что Птолемей спросил его, есть ли более короткий путь изучения геометрии, нежели «Начала»; а тот ответил, что нет царского пути к геометрии». Все выше названные, кроме арабских авторов, упоминают о Евклиде только как об авторе знаменитого сочинения «Начала» - его главного труда, написанного примерно в 300 году до н.э. Известно также, что Евклид был первым математиком Александрийской школы и работал при знаменитой Александрийской библиотеке.

Состоящие из 13 книг на древнегреческом, «Начала» представляют собой первый систематизированный теоретический трактат по математике и геометрии. Они стали своего рода итогом развития всей античной науки, дав огромный толчок последующим исследованиям. С самого появления работы к ней писали комментарии другие учёные, начиная от Прокла и заканчивая арабскими и европейскими авторами Средневековья и Нового времени, среди которых были Галилео Галилей , Рене Декарт , Исаак Ньютон . Некоторые исследователи утверждают, что «Начала» были самой популярной и значимой книгой в Средневековой Европе. Объясняется это тем, что вплоть до XX века изучение «Начал» Евклида было обязательным требованием для студентов всех университетов. Это была самая первая математическая работа, напечатанная после изобретения печатного станка. Первый выпуск в Европе вышел в 1482 году в Венеции.

Начало каждой из 13-ти книг состоит из определений, аксиом и постулатов. Затем идут задачи на построение и теоремы, а после – доказательства этих теорем и решение задач. В своей работе Евклид не ссылается на своих предшественников, а лишь опирается на их результаты. Исследователи установили, что он пользовался работами Гиппократа Хиосского, Евдокс Книдского , Теэтета Афинского и работами разных пифагорейцев.

Первая книга посвящена изучению свойств прямоугольных треугольников и параллелограммов. В ней же рассматривается знаменитая теорема Пифагора , доказательство которой Евклидом стало одним из самых распространенных среди всех доказательств в современной науке. Но самым интересным является 5-ый постулат Евклида, который гласит, что «если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых». Этот постулат впоследствии комментировался и исследовался многими учёными, что привело к появлению неевклидовой геометрии в Новом времени. В неевклидовой геометрии пространство представляется искривленным, в отличие от нулевой кривизны пространства классической евклидовой геометрии.

Вторая, третья и четвертая книги основаны на трудах пифагорейцев и раскрывают задачи и теоремы геометрии окружностей, их касательных и хорд, вписанных и описанных многоугольников, построения правильных многоугольников. В пятой книге рассматривается общая теория отношений или теория пропорций величин, которую разработал Евдокс Книдский, дошедшая до нас только в «Началах». В шестой книге на практике применяется теория отношений для доказательства подобия геометрических фигур. На этом заканчивается первая часть «Начал», в которой рассматривались одноплоскостные фигуры.

Седьмая, восьмая и девятая книги посвящены элементарной теории чисел. В них рассматриваются свойства простых чисел, их делимость, пропорции, геометрическая прогрессия и суммы прогрессий, бесконечность простых чисел и строительство совершенных чисел. Также в седьмой книге Евклид предлагает своей алгоритм нахождения наибольшего общего делителя и наименьшего общего кратного. Самая объемная десятая книга представляет собой попытку классификации несоизмеримых (в современном понимании, иррациональных) величин.

Книги с одиннадцатой по тринадцатую – это теория пространственной геометрии или стереометрии. Одиннадцатая воплощает теории первых шести книг в пространстве – перпендикулярность, параллелизм, объемы параллелепипедов. В двенадцатой рассказывается об исследованиях объемов конусов, пирамид и цилиндров. И, наконец, в тринадцатой книге описываются пять правильных многогранников или платоновых тел, вписанных в сферу, и доказывается, что их не может быть больше.

Считается, что свой математический труд Евклид написал, работая в Александрийской библиотеке. Александрийская библиотека представляла собой не просто огромное собрание разнообразных книг и источников, а была местом, где собирались виднейшие представители наук, вели дискуссии, работали над своими трудами и представляли их на всеобщее обозрение. В разное время в ней работали Эратосфен Киренский, Аристофан, Архимед, Птолемей и многие другие. Неудивительно, что Евклид, находясь в такой благоприятной для развития мысли обстановке смог создать действительно уникальное произведение, по величине и значимости соизмеримое с важнейшими открытиями современного мира.

Кроме «Начал» сохранилось всего 4 произведения Евклида: «Явления» (о применении сферической геометрии в астрономии), «Данные» (о построении фигур), «О делении» (применительно к геометрическим фигурам) и «Оптика» (о распространении света). Сохранились косвенные данные о других сочинениях учёного. К тому же традиционно Евклиду приписывают авторство ещё двух произведений – теория зеркал «Катоптрика» и трактат по теории музыки «Деление канона», но установить их авторство не представляется возможным.

Подводя итог, можно говорить о том, что Евклид и его «Начала» имеют действительно огромное значение для науки. Систематизировав и обобщив прошлые достижения математиков, сделав свои открытия, Евклид создал фундаментальный труд, который стал важной частью современной математики и геометрии. И хотя нам практически ничего не известно о том, каким человеком был Евклид, и как проходила его научная деятельность, но результат этой деятельности, несомненно, вызывает восхищение и уважение. Евклид стал своего рода границей в науке, собрав воедино научные достижения прошлого и дав сильный задел для развития исследований будущего. В честь него названы космический летательный аппарат для изучения геометрии темной материи, город в США, алгоритм для получения традиционного музыкального ритма и многие математические открытия более позднего времени.

ЕВКЛИД (Eukleides)

III век до н. э.

Евклид (иначе Эвклид) – древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения об Евклиде крайне скудны. Известно лишь, что учителями Евклида в Афинах были ученики Платона , а в правление Птолемея I (306-283 до н.э.) он преподавал в Александрийской академии. Евклид – первый математик александрийской школы.

Главная работа Архимеда – "Начала" (лат. Elementa ) – содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел (например, алгоритм Евклида ); состоит из 13-ти книг, к которым присоединяют две книги о пяти правильных многогранниках, иногда приписываемых Гипсиклу Александрийскому. В "Началах" он подвёл итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики. На протяжении более двух тысячелетий евклидовы "Начала" оставались основным трудом по элементарной математике.

Из других математических сочинений Евклида надо отметить "О делении фигур", сохранившееся в арабском переводе, четыре книги "Конические сечения", материал которых вошёл в одноимённое произведение Аполлония Пергского, а также "Поризмы", представление о которых можно получить из "Математического собрания" Паппа Александрийского.

В трудах Евклида дано систематическое изложение т. н. евклидовой геометрии , система аксиом которой опирается на следующие основные понятия: точка, прямая, плоскость, движение и следующие отношения: "точка лежит на прямой на плоскости", "точка лежит между двумя другими". В современном изложении систему аксиом евклидовой геометрии разбивают на следующие пять групп.

I. Аксиомы сочетания. 1) Через каждые две точки можно провести прямую и притом только одну. 2) На каждой прямой лежат по крайней мере две точки. Существуют хотя бы три точки, не лежащие на одной прямой. 3) Через каждые три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну. 4) На каждой плоскости есть по крайней мере три точки и существуют хотя бы четыре точки, не лежащие в одной плоскости. 5) Если две точки данной прямой лежат на данной плоскости, то и сама прямая лежит на этой плоскости. 6) Если две плоскости имеют общую точку, то они имеют ещё одну общую точку (и, следовательно, общую прямую).

II. Аксиомы порядка. 1) Если точка В лежит между А и С, то все три лежат на одной прямой. 2) Для каждых точек А, В существует такая точка С, что В лежит между А и С. 3) Из трёх точек прямой только одна лежит между двумя другими. 4) Если прямая пересекает одну сторону треугольника, то она пересекает ещё другую его сторону или проходит через вершину (отрезок AB определяется как множество точек, лежащих между А и В; соответственно определяются стороны треугольника).

III. Аксиомы движения. 1) Движение ставит в соответствие точкам точки, прямым прямые, плоскостям плоскости, сохраняя принадлежность точек прямым и плоскостям. 2) Два последовательных движения дают опять движение, и для всякого движения есть обратное. 3) Если даны точки А, A" и полуплоскости a , a ", ограниченные продолженными полупрямыми а, а" , которые исходят из точек А, A" , то существует движение, и притом единственное, переводящее А , а , a в A" , a ", a" (полупрямая и полуплоскость легко определяются на основе понятий сочетания и порядка).

IV. Аксиомы непрерывности. 1) Аксиома Архимеда: всякий отрезок можно перекрыть любым отрезком, откладывая его на первом достаточное число раз (откладывание отрезка осуществляется движением). 2) Аксиома Кантора: если дана последовательность отрезков, вложенных один в другой, то все они имеют хотя бы одну общую точку.

V. Аксиома параллельности Евклида. Через точку А вне прямой а в плоскости, проходящей через А и а , можно провести лишь одну прямую, не пересекающую а .

Возникновение евклидовой геометрии тесно связано с наглядными представлениями об окружающем нас мире (прямые линии – натянутые нити, лучи света и т. п.). Длительный процесс углубления наших представлений привёл к более абстрактному пониманию геометрии. Открытие Н. И. Лобачевским геометрии, отличной от евклидовой, показало, что наши представления о пространстве не являются априорными. Иными словами, евклидова геометрия не может претендовать на роль единственной геометрии, описывающей свойства окружающего нас пространства. Развитие естествознания (главным образом физики и астрономии) показало, что евклидова геометрия описывает структуру окружающего нас пространства лишь с определённой степенью точности и не пригодна для описания свойств пространства, связанных с перемещениями тел со скоростями, близкими к световой. Т. о., евклидова геометрия может рассматриваться как первое приближение для описания структуры реального физического пространства.